Final Exam Review

CS 450: Operating Systems
Michael Lee <lee@iit.edu>
Topics

- Concurrency
- Threads
- Locks
- Semaphores
- I/O
- HDDs
Midterm Exam Logistics

- Monday 5/1 8AM-10AM in SB 104
- Up to 3 pages of typed or handwritten notes permitted on exam
- Calculators ok, no phones/other devices
Concurrency

- What is it?
- Why do we want it?
 - Improved CPU & I/O utilization
 - Increase in performance (speed-up)
- How is it implemented?
 - Time multiplexing vs. Parallelism
 - Processes vs. Threads
Threads and Threading models

- How are threads different from processes?
- What does each thread require (as implementation)?
- Threading models (implementation, pros/cons)
 - User-level (green) threads
 - Kernel-level threads
 - Hybrid threading model
Limits of Parallelism

- Amdahl’s & Gustafson’s laws
 - What are they?
 - When are they applicable?
 - What are their ramifications?
Race conditions & Critical Sections

- What is a race condition?
 - What conditions are necessary for them to exist?
- What is a critical section?
 - How might we deal with them?
Locks & Locking strategies

- What is a lock & how is it used?
- Locking strategies (description, pros/cons)
 - Coarse grained
 - Fine grained
Implementing locks

- Spinlocks & Ticket locks
 - Why do we need h/w support? What do we need?
 - Where are they implemented?
- Pros/Cons of spinlocks
- What can we build on top of them?
Sleep / Wakeup

- Why do we have these mechanisms?
- How are they implemented/used in xv6?
 - Why do we still need spinlocks?
(No Pthreads!)
Semaphores & Synchronization

- What are the basic semaphore rules?
- Essential patterns:
 - Rendezvous, Mutex, Multiplex, Generalized Rendezvous
- Basic problems:
 - P/C, R/W (Lightbulb pattern), Dining Philosophers
- Applying these patterns!
Practice problems!

- In the Little Book of Semaphores, study:
 - The “Dining Savages” problem
 - A “scoreboard” pattern for synchronizing threads
 - The “River Crossing” problem
 - A pattern for “matching” different thread types
Concurrent programming paradigms

- What is the “default” model, and why is it hard to work with?
- Software transactional memory
- Actor model (Message passing)
- Even-driven programming (Asynchronous)
I/O devices

- Basic I/O device model & protocol
- Protocol variants
 - Basic protocol
 - Polled vs. Interrupt driven
- Programmed I/O vs. Direct Memory Access
- Special instructions vs. Memory-mapped I/O
HDDs

- Basic HDD geometry and considerations
- Seek/Rotate/Transfer access mechanism
 - Disk throughput computation
- Disk head scheduling algorithms