
§Fast File System (FFS)



“Old FS”
- Very similar to the design we just covered

- Disk throughput starts out slow, and quickly deteriorates


- Compared to max throughput, deteriorates from ~18% to ~2% 

- Why?

- Metadata & data are not close to each other

- Files become fragmented over time



Some “simple” fixes
- Increasing block size


- Doubling block size more than doubles performance

- If scaled up, risks wasting space for small files (internal fragmentation)


- Can periodically defragment files (i.e., move all blocks for files next to 
each other on the disk)

- Time-consuming and impractical



Solution: HDD-aware FS
- Fast File System (FFS) was among the first to heavily optimize for HDDs


- Inspiration for many modern FSes, including ext2/ext3

- Also introduced important quality-of-life improvements:


- Long file names

- Atomic rename

- Symbolic links
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Smart structure allocation
- Goal: reduce seeks by improving spatial locality of common accesses


- Create logical block “groups” for related structures

- Keep file inodes close to the directory inodes that contain them

- Allocate the first data block of a file close to its inode


- Keep file inodes, indirect blocks, and data blocks together



Large blocks
- Increased block size up to 8 KB


- If average file size = 2 KB, how much disk space is wasted?

- Average file uses 25% of a block; 75% of reserved space is wasted!


- To mitigate internal fragmentation, the last block of a file may reside in a 
block fragment (512 byte sized) 

- Complicates things when “growing” a file — must copy and coalesce



Takeaways
- At a low level, we should recognize device idiosyncrasies


- E.g., treat HDD as rotating magnetic platters, not random access memory!

- (Even RAM is not truly random access memory!)


- But also take care to revisit and update these assumptions

- SSDs should not be treated like HDDs!



§FS Consistency and Journaling



What can go wrong?
- Crux of the problem: a FS update may require writing to many disk blocks


- No way to guarantee they all succeed!

- Operations may only be partially carried out … to what end?



1. Update in-memory free space bitmap

2. Update in-memory inode (“vnode”)

3. Write updated inode to disk

4. Write updated free space bitmap to disk

E.g., growing a file

crash! !

- No persistent structures updated — no FS issues

- But user may be confused on reboot to find data not saved


- Compromise: FS can guarantee persistence on explicit flush operation



1. Update in-memory free space bitmap

2. Update in-memory inode (“vnode”)

3. Write updated inode to disk

4. Write updated free space bitmap to disk

E.g., growing a file

crash! !

- Inode indicates new block is reserved … but block is still marked as free!

- Dangerous FS inconsistency: block may be reused for another file


- May manifest as unpredictable data corruption/sharing



1. Update in-memory free space bitmap

2. Update in-memory inode (“vnode”)

3. Write updated free space bitmap to disk

4. Write updated inode to disk

E.g., growing a file

crash! !

- Block is marked as allocated … but not actually in use by any file

- “Lost” space, but no real danger (compared to previous scenario)

(swapped from before)



1. Update directory structure (detecting that # links to inode = 0)

2. Mark inode block and all data blocks as free in bitmap

3. Write updated free space bitmap to disk

4. Write updated directory to disk

E.g., deleting a file (last link)

crash! !

- All file-related blocks are now marked as free … but the inode that ties 
them together is still linked from a directory

- Dangerous free-space-in-use situation again!



1. Update directory structure (detecting that # links to inode = 0)

2. Mark inode block and all data blocks as free in bitmap

3. Write updated directory to disk

4. Write updated free space bitmap to disk

E.g., deleting a file (last link)

crash! !

- “Orphaned inode” situation — inode is still allocated and refers to data 
blocks, but it has no links

- Preferable to potential data corruption

(swapped from before)



Soft updates
- Imminent data corruption vs. storage “leak”


- Latter is the lesser of two evils

- Soft updates is a system of ordering on-disk structure updates such that 

FS inconsistencies are limited to lost space

- But we don’t want to lose space forever!



FSCK
- Manually walk through all FS metadata (superblock, inodes, directories)


- Allocated inodes with 0 links can be freed

- Allocated blocks with no referencing inodes can be “garbage collected”


- Unix fsck utility can report:

- Orphaned inodes, incorrect link counts, “lost” data blocks, incorrect 

superblock counts, etc.

- Also recovers “lost and found” data



We can do better!
- Soft updates is not trivial to implement, and requires frequent flushing


- Certain structures must be written before others

- May interfere with caching policies


- FSCK is time-consuming, and there is no way to restore system to a 
known prior state

- I.e., fixes restores consistency, but the end result may not reflect a 

logical “snapshot” of the FS at any particular time



Journaling
- Simple idea:


A. Write down what you’re about to do

B. Go and do it


- If system crashes during A, no harm done

- If system crashes after A but before B finishes, we can “replay” A


- If necessary, finish up



E.g., journaling
<transaction>

  update inode X with data Bx

  update free-space bitmap M with data Bm

  update data blocks I, J, K, … with data Bi, Bj, Bk, …

ɠ
journal log

ɡ
journal commit </transaction>

ɢ
checkpoint Perform transaction contents (update blocks X, M, I, J, K, …)
free Mark journal entry as completed and free for reuseɣ



E.g., journaling
<transaction>

  update inode X with data Bx

  update free-space bitmap M with data Bm

  update data blocks I, J, K, … with data Bi, Bj, Bk, …

ɠ
journal log

crash! !

- Transaction not committed and not started

- Nothing to do but delete the partial transaction record — no FS 

inconsistencies to worry about



E.g., journaling
<transaction>

  update inode X with data Bx

  update free-space bitmap M with data Bm

  update data blocks I, J, K, … with data Bi, Bj, Bk, …

ɠ
journal log

crash! !
ɡ

journal commit </transaction>

- Journal entry committed but checkpoint not complete

- Simply replay the journal entry!

ɢ



Managing overhead
- Journal is treated as a “circular log” — entries can be reused when done

- But still a huge write-twice penalty!


- Every block is written twice: once to journal, once to final destination

- Can drastically reduce overhead with a semantic / metadata journal


- Data block contents are not written to journal, but rather update data 
blocks at final destinations before creating journal entry

- Avoids FS consistency issues, but partial data updates are possible



Eliminating write-twice?
- Clever idea: the filesystem is the journal


- Just keep appending new entries to the journal instead of overwriting 
existing metadata/data


- To get the current state of any file, replay the journal

- Periodically save checkpoints to limit replay, and garbage collect 

unreachable blocks

- Inspiration for log-structured filesystems 

- Not very practical for HDDs (high fragmentation), but work well in SSDs!




