
§Fast File System (FFS)

“Old FS”
- Very similar to the design we just covered

- Disk throughput starts out slow, and quickly deteriorates

- Compared to max throughput, deteriorates from ~18% to ~2%

- Why?

- Metadata & data are not close to each other

- Files become fragmented over time

Some “simple” fixes
- Increasing block size

- Doubling block size more than doubles performance

- If scaled up, risks wasting space for small files (internal fragmentation)

- Can periodically defragment files (i.e., move all blocks for files next to
each other on the disk)

- Time-consuming and impractical

Solution: HDD-aware FS
- Fast File System (FFS) was among the first to heavily optimize for HDDs

- Inspiration for many modern FSes, including ext2/ext3

- Also introduced important quality-of-life improvements:

- Long file names

- Atomic rename

- Symbolic links

(cylinder

groups)

Locality groups
SB BM

Inodes

Data

SB BM Inodes Data

SB BM Inodes Data

SB BM Inodes Data

SB BM Inodes Data

SB BM Inodes Data

vs.

Smart structure allocation
- Goal: reduce seeks by improving spatial locality of common accesses

- Create logical block “groups” for related structures

- Keep file inodes close to the directory inodes that contain them

- Allocate the first data block of a file close to its inode

- Keep file inodes, indirect blocks, and data blocks together

Large blocks
- Increased block size up to 8 KB

- If average file size = 2 KB, how much disk space is wasted?

- Average file uses 25% of a block; 75% of reserved space is wasted!

- To mitigate internal fragmentation, the last block of a file may reside in a
block fragment (512 byte sized)

- Complicates things when “growing” a file — must copy and coalesce

Takeaways
- At a low level, we should recognize device idiosyncrasies

- E.g., treat HDD as rotating magnetic platters, not random access memory!

- (Even RAM is not truly random access memory!)

- But also take care to revisit and update these assumptions

- SSDs should not be treated like HDDs!

§FS Consistency and Journaling

What can go wrong?
- Crux of the problem: a FS update may require writing to many disk blocks

- No way to guarantee they all succeed!

- Operations may only be partially carried out … to what end?

1. Update in-memory free space bitmap

2. Update in-memory inode (“vnode”)

3. Write updated inode to disk

4. Write updated free space bitmap to disk

E.g., growing a file

crash! !

- No persistent structures updated — no FS issues

- But user may be confused on reboot to find data not saved

- Compromise: FS can guarantee persistence on explicit flush operation

1. Update in-memory free space bitmap

2. Update in-memory inode (“vnode”)

3. Write updated inode to disk

4. Write updated free space bitmap to disk

E.g., growing a file

crash! !

- Inode indicates new block is reserved … but block is still marked as free!

- Dangerous FS inconsistency: block may be reused for another file

- May manifest as unpredictable data corruption/sharing

1. Update in-memory free space bitmap

2. Update in-memory inode (“vnode”)

3. Write updated free space bitmap to disk

4. Write updated inode to disk

E.g., growing a file

crash! !

- Block is marked as allocated … but not actually in use by any file

- “Lost” space, but no real danger (compared to previous scenario)

(swapped from before)

1. Update directory structure (detecting that # links to inode = 0)

2. Mark inode block and all data blocks as free in bitmap

3. Write updated free space bitmap to disk

4. Write updated directory to disk

E.g., deleting a file (last link)

crash! !

- All file-related blocks are now marked as free … but the inode that ties
them together is still linked from a directory

- Dangerous free-space-in-use situation again!

1. Update directory structure (detecting that # links to inode = 0)

2. Mark inode block and all data blocks as free in bitmap

3. Write updated directory to disk

4. Write updated free space bitmap to disk

E.g., deleting a file (last link)

crash! !

- “Orphaned inode” situation — inode is still allocated and refers to data
blocks, but it has no links

- Preferable to potential data corruption

(swapped from before)

Soft updates
- Imminent data corruption vs. storage “leak”

- Latter is the lesser of two evils

- Soft updates is a system of ordering on-disk structure updates such that

FS inconsistencies are limited to lost space

- But we don’t want to lose space forever!

FSCK
- Manually walk through all FS metadata (superblock, inodes, directories)

- Allocated inodes with 0 links can be freed

- Allocated blocks with no referencing inodes can be “garbage collected”

- Unix fsck utility can report:

- Orphaned inodes, incorrect link counts, “lost” data blocks, incorrect

superblock counts, etc.

- Also recovers “lost and found” data

We can do better!
- Soft updates is not trivial to implement, and requires frequent flushing

- Certain structures must be written before others

- May interfere with caching policies

- FSCK is time-consuming, and there is no way to restore system to a
known prior state

- I.e., fixes restores consistency, but the end result may not reflect a

logical “snapshot” of the FS at any particular time

Journaling
- Simple idea:

A. Write down what you’re about to do

B. Go and do it

- If system crashes during A, no harm done

- If system crashes after A but before B finishes, we can “replay” A

- If necessary, finish up

E.g., journaling
<transaction>

 update inode X with data Bx

 update free-space bitmap M with data Bm

 update data blocks I, J, K, … with data Bi, Bj, Bk, …

ɠ
journal log

ɡ
journal commit </transaction>

ɢ
checkpoint Perform transaction contents (update blocks X, M, I, J, K, …)
free Mark journal entry as completed and free for reuseɣ

E.g., journaling
<transaction>

 update inode X with data Bx

 update free-space bitmap M with data Bm

 update data blocks I, J, K, … with data Bi, Bj, Bk, …

ɠ
journal log

crash! !

- Transaction not committed and not started

- Nothing to do but delete the partial transaction record — no FS

inconsistencies to worry about

E.g., journaling
<transaction>

 update inode X with data Bx

 update free-space bitmap M with data Bm

 update data blocks I, J, K, … with data Bi, Bj, Bk, …

ɠ
journal log

crash! !
ɡ

journal commit </transaction>

- Journal entry committed but checkpoint not complete

- Simply replay the journal entry!

ɢ

Managing overhead
- Journal is treated as a “circular log” — entries can be reused when done

- But still a huge write-twice penalty!

- Every block is written twice: once to journal, once to final destination

- Can drastically reduce overhead with a semantic / metadata journal

- Data block contents are not written to journal, but rather update data
blocks at final destinations before creating journal entry

- Avoids FS consistency issues, but partial data updates are possible

Eliminating write-twice?
- Clever idea: the filesystem is the journal

- Just keep appending new entries to the journal instead of overwriting
existing metadata/data

- To get the current state of any file, replay the journal

- Periodically save checkpoints to limit replay, and garbage collect

unreachable blocks

- Inspiration for log-structured filesystems

- Not very practical for HDDs (high fragmentation), but work well in SSDs!

