S Fast File System (FFS)

ILLINOIS TECH | College of Computing



“Old FS”

- Very similar to the design we just covered
- Disk throughput starts out slow, and quickly deteriorates
- Compared to max throughput, deteriorates from ~18% to ~2%
- Why?
- Metadata & data are not close to each other

- Files become fragmented over time

ILLINOIS TECH | College of Computing



Some “simple” fixes

- Increasing block size
- Doubling block size more than doubles performance
- |f scaled up, risks wasting space for small files (internal fragmentation)

- Can periodically defragment files (i.e., move all blocks for files next to
each other on the disk)

- Time-consuming and impractical

ILLINOIS TECH | College of Computing



Solution: HDD-aware FS

- Fast File System (FFS) was among the first to heavily optimize for HDDs
- |Inspiration for many modern FSes, including ext2/ext3

- Also introduced important quality-of-life iImprovements:
- Long file names
- Atomic rename

- Symbolic links

ILLINOIS TECH | College of Computing



Locality groups

I I T

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~§
~I

ILLINOIS TECH | College of Computing



Smart structure allocation

- Goal: reduce seeks by improving spatial locality of common accesses
- Create logical block “groups” for related structures
- Keep file iInodes close to the directory inodes that contain them
- Allocate the first data block of a file close to its inode

- Keep file inodes, indirect blocks, and data blocks together

ILLINOIS TECH | College of Computing



Large blocks

- Increased block size up to 8 KB
- |f average file size = 2 KB, how much disk space is wasted?
- Average file uses 25% of a block; 75% of reserved space is wasted!

- To mitigate internal fragmentation, the last block of a file may reside in a
block fragment (512 byte sized)

- Complicates things when “growing” a file — must copy and coalesce

ILLINOIS TECH | College of Computing



Takeaways

- At a low level, we should recognize device idiosyncrasies
- E.g., treat HDD as rotating magnetic platters, not random access memory!
- (Even RAM is not truly random access memory!)

- But also take care to revisit and update these assumptions

- SSDs should not be treated like HDDs!

ILLINOIS TECH | College of Computing



3 FS Consistency and Journaling

ILLINOIS TECH | College of Computing



What can go wrong?

- Crux of the problem: a FS update may require writing to many disk blocks
- No way to guarantee they all succeed!

- Operations may only be partially carried out ... to what end?

ILLINOIS TECH

College of Computing



E.g., growing a file

1. Update in-memory free space bitmap

2. Update in-memory inode (“vnode”)

4. Write updated free space bitmap to disk

- No persistent structures updated — no FS issues
- But user may be confused on reboot to find data not saved

- Compromise: FS can guarantee persistence on explicit flush operation

ILLINOIS TECH

College of Computing



E.g., growing a file

1. Update in-memory free space bitmap
2. Update in-memory inode (“vnode™)

3. Write updated inode to disk

- Inode indicates new block is reserved ... but block is still marked as free!
- Dangerous FS inconsistency: block may be reused for another file

- May manifest as unpredictable data corruption/sharing

ILLINOIS TECH

College of Computing



E.g., growing a file

1. Update in-memory free space bitmap

2. Update in-memory inode (“vnode”)

- Block is marked as allocated ... but not actually in use by any file

- “Lost” space, but no real danger (compared to previous scenario)

ILLINOIS TECH

College of Computing



E.g., deleting a file (last link)

1. Update directory structure (detecting that # links to inode = 0)
2. Mark inode block and all data blocks as free in bitmap

3. Write updated free space bitmap to disk

- All file-related blocks are now marked as free ... but the inode that ties
them together is still linked from a directory

- Dangerous free-space-in-use situation again!

ILLINOIS TECH | College of Computing



E.g., deleting a file (last link)

1. Update directory structure (detecting that # links to inode = 0)
2. Mark inode block and all data blocks as free in bitmap

3. Write updated directory to disk <-------..___ (swapped from before)

- “Orphaned inode” situation — inode is still allocated and refers to data
blocks, but it has no links

- Preferable to potential data corruption

ILLINOIS TECH | College of Computing



Soft updates

- Imminent data corruption vs. storage “leak”
- Latter is the lesser of two evils

- Soft updates is a system of ordering on-disk structure updates such that
FS inconsistencies are limited to lost space

- But we don’t want to lose space forever!

ILLINOIS TECH | College of Computing



- Manually walk through all FS metadata (superblock, inodes, directories)

- Allocated inodes with O links can be freed

- Allocated blocks with no referencing inodes can be “garbage collected”
- Unix fsck utility can report:

- Orphaned inodes, incorrect link counts, “lost” data blocks, incorrect
superblock counts, etc.

- Also recovers “lost and found” data

ILLINOIS TECH | College of Computing



We can do better!

- Soft updates is not trivial to implement, and requires frequent flushing
- Certain structures must be written before others
- May interfere with caching policies

- FSCK is time-consuming, and there is no way to restore system to a
known prior state

- |.e., fixes restores consistency, but the end result may not reflect a
logical “snapshot” of the FS at any particular time

ILLINOIS TECH | College of Computing



Journaling

- Simple idea:

A. Write down what you’re about to do
B. Goand do it
- If system crashes during A, no harm done
- If system crashes after A but before B finishes, we can “replay” A

- If necessary, finish up

ILLINOIS TECH | College of Computing



E.g., journaling

<transaction>

update inode X with data By

@ journal log
update free-space bitmap M with data Bm

update data blocks |, J, K, ... with data B;, Bj, By, ...

journal commit

</transaction>

checkpoint

Perform transaction contents (update blocks X, M, |, J, K, ...)

free

> © O

Mark journal entry as completed and free for reuse

ILLINOIS TECH

College of Computing



E.g., journaling

<transaction>

update inode X with data By

@ journal log
update free-space bitmap M with data Bm

update data blocks |, J, K, ... with data B;, Bj, By, ...

- Transaction not committed and not started

- Nothing to do but delete the partial transaction record — no FS
Inconsistencies to worry about

ILLINOIS TECH

College of Computing



E.g., journaling

<transaction>

D iournal log update inode X with data Bx

update free-space bitmap M with data Bm
update data blocks |, J, K, ... with data B;, Bj, By, ...

journal commit :
2 </transaction>

- Journal entry committed but checkpoint not complete

- Simply replay the journal entry!
ILLINOIS TECH | College of Computing



Managing overhead

- Journal Is treated as a “circular log” — entries can be reused when done
- But still a huge write-twice penalty!

- Every block is written twice: once to journal, once to final destination
- Can drastically reduce overhead with a semantic / metadata journal

- Data block contents are not written to journal, but rather update data
blocks at final destinations before creating journal entry

- Avoids FS consistency issues, but partial data updates are possible

ILLINOIS TECH

College of Computing



Eliminating write-twice?

- Clever idea: the filesystem is the journal

- Just keep appending new entries to the journal instead of overwriting
existing metadata/data

- To get the current state of any file, replay the journal

- Periodically save checkpoints to limit replay, and garbage collect
unreachable blocks

- Inspiration for log-structured filesystems

- Not very practical for HDDs (high fragmentation), but work well in SSDs!

ILLINOIS TECH

College of Computing



7 a”c%f%x/

ILLINOIS TECH

College of Computing



