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§ Traditional concurrent 
programming



- Simon Peyton Jones, Beautiful Concurrency

“The free lunch is over. We have grown used to the idea that our programs will 
go faster when we buy a next-generation processor, but that time has passed. 
While that next-generation chip will have more CPUs, each individual CPU will be 
no faster than the previous year’s model. If we want our programs to run faster, 
we must learn to write parallel programs.”



“Conventional programming languages are growing ever more enormous, but not 
stronger. Inherent defects at the most basic level cause them to be both fat and 
weak: their primitive word-at-a-time style of programming …, their close 
coupling of semantics to state transitions, their division of programming into a 
world of expressions and a world of statements, their inability to effectively 
use powerful combining forms for building new programs from existing ones, and 
their lack of useful mathematical properties for reasoning about programs.”

- John Backus, Can Programming Be  
Liberated from the von Neumann Style? (1978)



Language popularity graph (TIOBE)



And the winners are …
- The most popular programming languages are imperative, procedural, 

and object-oriented 

- Imperative programs consist of sequences of statements that read and 
alter process state


- Procedural languages help us modularize programs by separating 
logic into different procedures


- OOP lets us bundle together data and procedures that act on them


- “Big mutable balls”



De facto concurrency model
- Based on shared, freely mutable memory


- Accessed by explicitly created & managed threads


- Relies on lock-based synchronization (e.g., semaphores, mutexes)



“Mutual-exclusion locks are one of the most widely used and fundamental abstractions 
for synchronization … Unfortunately, without specialist programming care, these 
benefits rarely hold for systems containing more than a handful of locks:


-For correctness, programmers must ensure that threads hold the necessary 
locks to avoid conflicting operations being executed concurrently...


-For liveness, programmers must be careful to avoid introducing deadlock and, 
consequently, they may cause software to hold locks for longer than would 
otherwise be necessary ...


-For high performance, programmers must balance the granularity at which 
locking operates against the time that the application will spend acquiring and 
releasing locks.”

- Keir Fraser, Concurrent Programming Without Locks



Managing complexity
- Implementing correct concurrent behavior via locks is hard!


- Race conditions are among the most insidious types of bugs


- Hard to detect, replicate, and fix — lots of extra program complexity 
(on top of existing application logic)


- Testing is a natural way to deal with complexity


- Idea: write comprehensive test suites to help detect and eliminate 
concurrency-related bugs, and ensure they stay gone



“… one of the fundamental problems with testing … [is that] testing for one set of 
inputs tells you nothing at all about the behaviour with a different set of inputs. 
In fact the problem caused by state is typically worse — particularly when testing 
large chunks of a system — simply because even though the number of possible 
inputs may be very large, the number of possible states the system can be in is 
often even larger.”


“One of the issues (that affects both testing and reasoning) is the exponential rate at 
which the number of possible states grows — for every single bit of state that we 
add we double the total number of possible states.”

- Ben Moseley and Peter Marks, Out of the Tar Pit



“Concurrency also affects testing … Running a test in the presence of concurrency 
with a known initial state and set of inputs tells you nothing at all about what will 
happen the next time you run that very same test with the very same inputs and 
the very same starting state. . . and things can’t really get any worse than that.”

- Ben Moseley and Peter Marks, Out of the Tar Pit



Composability
- A key idea in computer science and software engineering is reusability 


- An algorithm or program, once developed, can be reused for many 
different problems/inputs


- Just as important is composability 


- We can take independently developed and tested  
algorithms/modules and compose them together 
to build larger ones



=



“A fundamental problem with locks is that they are not composable. You can’t 
take two correct lock-based pieces of code, combine them, and know that the 
result is still correct. Modern software development relies on the ability to compose 
libraries into larger programs, and so it is a serious difficulty that we cannot build 
on lock-based components without examining their implementations.”

- Herb Sutter and James Larus,  
Software and the Concurrency Revolution



“... consider a hash table with thread-safe insert and delete operations. Now 
suppose that we want to delete one item A from table t1, and insert it into table t2; 
but the intermediate state (in which neither table contains the item) must not be 
visible to other threads. Unless the implementor of the hash table anticipates this 
need, there is simply no way to satisfy this requirement… In short, operations 
that are individually correct (insert, delete) cannot be composed into 
larger correct operations.”

- Tim Harris et al, Composable Memory Transactions



We deserve better!
- Lock-based concurrent programming defeats composability


- Makes building large, complex systems exponentially more difficult


- Root of the problem: low-level thread and lock APIs


- Forces us to explicitly manage concurrency, often commingling 
synchronization and application logic


- We want (and deserve) higher-level APIs!



“Most of today’s languages offer explicit programming at the level of threads and 
locks. These abstractions are low-level and difficult to reason about systematically. 
Because these constructs are a poor basis for building abstractions, they encourage 
multithreaded programming with its problems of arbitrary blocking and reentrancy.


Higher-level abstractions allow programmers to express tasks with inherent 
concurrency, which a runtime system can then combine and schedule to fit the 
hardware on the actual machine. This will enable applications that perform better on 
newer hardware.”

- Herb Sutter and James Larus,  
Software and the Concurrency Revolution



§ Alternative concurrent 
programming paradigms



§ Software transactional memory 
(STM)



STM: Overview
- Shared memory objects exist, but access to them is vetted and managed 

by runtime software


- No explicit locking and/or fine-grained synchronization logic


- Shared objects may only be manipulated within transactions


- Akin to database transactions


- STM automatically ensures key transactional properties



Transaction properties
- ACID properties


- Atomicity: all operations in the transaction succeed or fail as a unit


- Consistency: results of transactions are validated before being committed


- Isolation: intermediate results of a transaction aren’t visible to others



E.g., bank account transactions
- Consider withdrawing X from account A and depositing it into account B


- Atomicity: either withdrawal & deposit both succeed or fail


- Otherwise, maybe X is withdrawn and not deposited!


- Consistency: e.g., ensure that A is not overdrawn at end of transaction 
before changes are committed


- Isolation: intermediate state (X is withdrawn and not deposited, or 
deposited and not withdraw) is not visible


- Otherwise, balance inquiry taken mid-transaction could be misleading!



E.g., bank transactions (pthreads)
typedef struct {

    long balance;

} account_t;


account_t accounts[N_ACCS];


int withdraw(account_t *acc, long amount) {

    if (amount > acc->balance)

        return 0;

    acc->balance = acc->balance - amount;

    return 1;

}


void deposit(account_t *acc, long amount) {

    acc->balance = acc->balance + amount;

}

void *do_transactions(void *arg) {

    for (int i=0; i<N_TRANS; i++) {

        int from = random() % N_ACCS,

            to   = random() % N_ACCS;

        long amt = random() % 100;

        if (withdraw(&accounts[from], amt)) {

            deposit(&accounts[to], amt);

        }

    }

}


main() {

    for (int i=0; i<N_THREADS; i++)

        pthread_create(&tids[i], NULL, 

                       do_transactions, NULL);

}



E.g., bank transactions (pthreads)
void *do_transactions(void *arg) {

    for (int i=0; i<N_TRANS; i++) {

        int from = random() % N_ACCS,

            to   = random() % N_ACCS;

        long amt = random() % 100;

        if (withdraw(&accounts[from], amt)) {

            deposit(&accounts[to], amt);

        }

    }

}


main() {

    for (int i=0; i<N_THREADS; i++)

        pthread_create(&tids[i], NULL, 

                       do_transactions, NULL);

}

Start:

  1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

  Total: 10000


End:

  1927 -75 806 1045 -39 1671 960 580 478 571 

  Total: 7924

Two runs, N_THREADS=10, N_ACCS=10, N_TRANS=100000:

Start:

  1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

  Total: 10000


End:

  856 128 650 3992 107 1016 182 -25 2945 774 

  Total: 10625



E.g., bank transactions (pthreads)
typedef struct {

    long balance;

    pthread_mutex_t lock;

} account_t;


void *do_transactions(void *arg) {

  for (int i=0; i<NUM_TRANS; i++) {

    int from = random() % NUM_ACCS,

        to   = random() % NUM_ACCS;

    long amt = random() % 100;

    pthread_mutex_lock(&accounts[from].lock);

    pthread_mutex_lock(&accounts[to].lock);

    if (withdraw(&accounts[from], amt)) {

      deposit(&accounts[to], amt);

    }

    pthread_mutex_unlock(&accounts[from].lock);

    pthread_mutex_unlock(&accounts[to].lock);

  }

}

N_THREADS=3, N_ACCS=10, N_TRANS=1000:

Start:

  1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

  Total: 10000


... (hangs)

N_THREADS=10, N_ACCS=10, N_TRANS=1000:

Start:

  1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

  Total: 10000


End:

  910 482 926 682 294 2090 346 24 2478 1768

  Total: 10000

deadlock!



STM in Clojure
- Clojure is a Lisp (what’s a Lisp? 🤯) built for the JVM


- Transactional references (refs) can only be mutated from within a 
transaction (bounded by dosync)


- Clojure STM is implemented using Multiversion Concurrency Control (MCC)


- Transactions run concurrently, and each optimistically computes new 
versions of values based on original references


- Maximizes concurrency, but may require transaction restarts!



STM in Clojure
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E.g., bank transactions (STM)
(defstruct account :balance)


(def accounts 

  (repeatedly naccounts

    #(ref (struct account 1000)

          :validator (fn [acc] 

                       (>= (:balance acc) 0)))))

          

(defn withdraw [acc amt]

  (let [bal (:balance acc)]

    (assoc acc :balance (- bal amt))))


(defn deposit [acc amt]

  (let [bal (:balance acc)]

    (assoc acc :balance (+ bal amt))))

(defn do-transfers [n]

  (dotimes [_ n]

    (let [from (nth accounts (rand-int naccounts))

          to   (nth accounts (rand-int naccounts))

          amt  (rand-int 100)]

      (try

        (dosync ; start transaction

          (alter from withdraw amt)

          (alter to   deposit  amt))

        (catch Exception e)))))

      

(defn run-transfers [nthreads ntrans]

  (dorun (apply pcalls 

           (repeat nthreads 

             #(do-transfers ntrans)))))



E.g., bank transactions (STM)
(defn do-transfers [n]

  (dotimes [_ n]

    (let [from (nth accounts (rand-int naccounts))

          to   (nth accounts (rand-int naccounts))

          amt  (rand-int 100)]

      (try

        (dosync ; start transaction

          (alter from withdraw amt)

          (alter to   deposit  amt))

        (catch Exception e)))))

      

(defn run-transfers [nthreads ntrans]

  (dorun (apply pcalls 

           (repeat nthreads 

             #(do-transfers ntrans)))))

Start:

  (1000 1000 1000 1000 1000 1000 1000 1000 1000 1000)

  10000


End:

  (2827 1443 931 1296 93 1797 122 5 396 1090)

  10000

Two runs with nthreads=10, naccounts=10, ntrans=100000:

Start:

  (1000 1000 1000 1000 1000 1000 1000 1000 1000 1000)

  10000


End:

  (14 1848 1290 391 269 1654 641 2307 330 1256)

  10000



STM Pros/Cons
- Language/Runtime takes care of synchronization issues


- Removes burden from programmer


- But this “magic” has a cost!


- If optimistic (as with MCC), transaction restarts waste time/energy


- If pessimistic (e.g., with locking), may not maximize concurrency



§ Message-passing



Message-passing: Overview
- No shared memory between threads (aka “actors”)


- Message-passing paradigm also known as the “actor model”


- Actors communicate by sending each other messages


- Messages are queued in per-actor mailboxes


- Actors can create other actors, compute results, send messages


- Actors run concurrently (possibly in parallel) and share nothing
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Erlang
- Language/Platform created at Ericsson for telecom apps


- Designed for concurrent, distributed, real-time systems


- “99.9999999 percent reliability (9 nines, or 31 ms. downtime a year!)”


- Functional core


- Spawning actors (“processes”) is cheap (scales to millions of processes)


- Processes communicate via message passing (FIFO mailboxes)


- Essential model: client/server



Erlang messaging syntax
- Creating processes: 
	 Pid = spawn(Fun, Args)


- Sending messages (asynchronous): 
	 Pid ! Message


- Receiving messages (synchronous): 
	 receive Pattern1 -> Expr1; ... end



loop(State) ->

    receive

        terminate -> done;

        Message   -> loop(process(Message, State))

    end.

- Server with “state”:

% “process” returns new value of State

loop() ->

    receive

        terminate -> done;

        Message   -> process(Message),

                     loop()

    end.

- Basic server template:

% block for a message in the mailbox
% “terminate” and “done” are atoms (literals)
% capitalized symbols like “Message” are variables
% recurse to “loop” server body

Erlang “servers”

pattern match

(first is taken)



E.g., bank transactions (Erlang)
account(Balance) ->

   receive

      {balance, Pid} ->

         Pid ! Balance,

         account(Balance);

      {deposit, Amount} ->

         account(Balance + Amount);

      {withdraw, Amount} ->

         if 

            Balance >= Amount -> account(Balance - Amount);

            true -> account(Balance)

         end;

      {transfer, ToPid, Amount} ->

         if 

            Balance >= Amount -> ToPid ! {deposit, Amount},

                                 account(Balance - Amount);

            true -> account(Balance)

         end

   end.

start() ->

   Acc1Pid = spawn(account, [1000]),

   Acc2Pid = spawn(account, [1000]),

   Acc1Pid ! {transfer, Acc2Pid, 250},

   sleep(100), % delay for completion

   Acc1Pid ! {balance, self()},

   Acc2Pid ! {balance, self()}.

> start().


> flush().  % flush shell’s mailbox

Shell got 750

Shell got 1250



Projects in Erlang
- Facebook Chat


- RabbitMQ messaging framework


- Amazon SimpleDB


- Apache CouchDB


- Lots of telephony and real-time (e.g., routing, VOIP) services



Message-passing Pros/Cons
- Scales well, helping to maximize opportunities for concurrency


- Lack of shared state makes (local) reasoning easy


- But synchronization issues do not magically go away!


- Careful coordination of actors is necessary (deadlock is still possible)


- Typically addressed by using “standard” communication protocols


- Mailboxes may grow large, and message copying is potentially inefficient



§ Event-driven paradigm



Event-driven: Overview
- Application logic is driven by events and associated event handlers


- Events are asynchronously generated by a variety of event sources, and 
entered into an event queue


- An event loop draws events from the queue and runs their handlers


- The event loop and all its handlers are run in a single thread, which 
simplifies logic and eliminates concurrency-related issues
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No blocking the loop!
- It is critical that handlers executed from the event loop do not block


- Otherwise the handling of all pending events will be delayed


- All I/O operations should make use of non-blocking APIs, or be delegated 
to separate worker threads


- Results are delivered to the event queue (or checked directly by the 
event loop) and processed in a single-threaded manner


- Compute-intensive operations should also be delegated to worker threads



Event-specific handlers
- How to specify handlers to execute for all possible event types?


- E.g., consider an incoming network request for records from a database


- Requires multiple steps / intermediate events:


1. Connect to database → Event: Connection established


2. Execute SQL query → Event: SQL result


3. Process result (if computation required) → Event: Compiled records


4. Deliver response over network → Event: Delivery success/failure



Central mechanism: Callback
- Instead of registering all possible handlers in advance, specify callback 

functions for each action that generates an event


- When an action completes, it schedules the callback function to be 
called (with the resulting event) from the event loop


- Callback functions are often specified as lambdas / anonymous functions


- Syntactic sugar: Promises and Async/Await



E.g., JavaScript / Node.js
- Focus on web applications (front and back end)


- Main event queue & thread optimized for responsiveness

webapp.get('/readfile/:filename', function (req, res) {

  const filename = req.params.filename

  fs.readFile(filename, 'utf8', function (err, data) {

    if (err) {

      res.sendStatus(404)

    } else {

      res.send(data)

    }

  })

})

callback functions



webapp.get('/readfile/:filename', function (req, res) {

  const filename = req.params.filename

  fs.readFile(filename, 'utf8', function (err, data) {

    if (err) {

      res.sendStatus(404)

    } else {

      res.send(data)

    }

  })

})

read foo.txt

E.g., JavaScript / Node.js

main

http://…/readfile/foo.txt

http://…/readfile/bar.txt

http://…/readfile/baz.txt

read bar.txt

read baz.txt
IO

http:///readfile/foo.txt
http:///readfile/bar.txt
http:///readfile/baz.txt


E.g., Swift
- Focus on native iOS/Mac app development


- All UI updates/events processed in the main event queue & thread


- Important to not to block the main thread to keep UI responsive!
Button("Start a lengthy operation ...", action: {

    DispatchQueue.global(qos: .userInitiated).async {

        print("This runs in a background thread")

        sleep(1); // simulate long-running computation

        DispatchQueue.main.async {

            // display result

            print("This runs back in the main event-handling thread again")

        }

    }

})
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E.g., Swift
Button("Start a lengthy operation ...", action: {

    DispatchQueue.global(qos: .userInitiated).async {

        print("This runs in a background thread")

        sleep(1); // simulate long-running computation

        DispatchQueue.main.async {

            // display result

            print("This runs back in the main event-handling thread again")

        }

    }

})

main

bg
computation #2


queued
computation #3


queued

(alternative: thread pool)



Event-driven Pros/Cons
- Single-threaded event loop doesn’t take advantage of parallel computation


- With worker threads and separate queues, we have (mostly) the same 
issues as message-passing


- Relies on non-blocking system calls


- Without them, must again resort to multithreaded code


- Asynchronous code is generally harder to write and understand than 
synchronous/sequential code (search “callback hell” & “pyramid of doom”)


- Modern APIs try to address this with Promises and other constructs



§ Summary



Summary
- Concurrent (and parallel) programming is hard, but arguably necessary


- Classical lock-driven concurrent programs are complex, error-prone, and 
non-composable


- There are many alternatives to lock-based concurrent programming, 
including STM, the actor model, and event-driven programming


- None are perfect!


- Do your research to understand what best suits your problem domain


