
§Semaphores



Reference: LBoS
- Little Book of Semaphores, 

by Allen Downey

- Focuses on synchronization 

using semaphores

- Includes classical and 

non-traditional problems

- Lots of sample code in 

quasi-Python syntax



Semaphore rules

Chapter 2

Semaphores

In real life a semaphore is a system of signals used to communicate visually,
usually with flags, lights, or some other mechanism. In software, a semaphore is
a data structure that is useful for solving a variety of synchronization problems.

Semaphores were invented by Edsger Dijkstra, a famously eccentric com-
puter scientist. Some of the details have changed since the original design, but
the basic idea is the same.

2.1 Definition

A semaphore is like an integer, with three differences:

1. When you create the semaphore, you can initialize its value to any integer,
but after that the only operations you are allowed to perform are increment
(increase by one) and decrement (decrease by one). You cannot read the
current value of the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the
thread blocks itself and cannot continue until another thread increments
the semaphore.

3. When a thread increments the semaphore, if there are other threads wait-
ing, one of the waiting threads gets unblocked.

To say that a thread blocks itself (or simply “blocks”) is to say that it notifies
the scheduler that it cannot proceed. The scheduler will prevent the thread from
running until an event occurs that causes the thread to become unblocked. In
the tradition of mixed metaphors in computer science, unblocking is often called
“waking”.

That’s all there is to the definition, but there are some consequences of the
definition you might want to think about.



Initialization & Operations

8 Semaphores

• In general, there is no way to know before a thread decrements a
semaphore whether it will block or not (in specific cases you might be
able to prove that it will or will not).

• After a thread increments a semaphore and another thread gets woken
up, both threads continue running concurrently. There is no way to know
which thread, if either, will continue immediately.

• When you signal a semaphore, you don’t necessarily know whether another
thread is waiting, so the number of unblocked threads may be zero or one.

Finally, you might want to think about what the value of the semaphore
means. If the value is positive, then it represents the number of threads that
can decrement without blocking. If it is negative, then it represents the number
of threads that have blocked and are waiting. If the value is zero, it means there
are no threads waiting, but if a thread tries to decrement, it will block.

2.2 Syntax

In most programming environments, an implementation of semaphores is avail-
able as part of the programming language or the operating system. Different
implementations sometimes offer slightly different capabilities, and usually re-
quire different syntax.

In this book I will use a simple pseudo-language to demonstrate how
semaphores work. The syntax for creating a new semaphore and initializing
it is

Listing 2.1: Semaphore initialization syntax

1 fred = Semaphore(1)

The function Semaphore is a constructor; it creates and returns a new
Semaphore. The initial value of the semaphore is passed as a parameter to
the constructor.

The semaphore operations go by different names in different environments.
The most common alternatives are

Listing 2.2: Semaphore operations

1 fred.increment()
2 fred.decrement()

and

Listing 2.3: Semaphore operations

1 fred.signal()
2 fred.wait()

and

8 Semaphores

• In general, there is no way to know before a thread decrements a
semaphore whether it will block or not (in specific cases you might be
able to prove that it will or will not).

• After a thread increments a semaphore and another thread gets woken
up, both threads continue running concurrently. There is no way to know
which thread, if either, will continue immediately.

• When you signal a semaphore, you don’t necessarily know whether another
thread is waiting, so the number of unblocked threads may be zero or one.

Finally, you might want to think about what the value of the semaphore
means. If the value is positive, then it represents the number of threads that
can decrement without blocking. If it is negative, then it represents the number
of threads that have blocked and are waiting. If the value is zero, it means there
are no threads waiting, but if a thread tries to decrement, it will block.

2.2 Syntax

In most programming environments, an implementation of semaphores is avail-
able as part of the programming language or the operating system. Different
implementations sometimes offer slightly different capabilities, and usually re-
quire different syntax.

In this book I will use a simple pseudo-language to demonstrate how
semaphores work. The syntax for creating a new semaphore and initializing
it is

Listing 2.1: Semaphore initialization syntax

1 fred = Semaphore(1)

The function Semaphore is a constructor; it creates and returns a new
Semaphore. The initial value of the semaphore is passed as a parameter to
the constructor.

The semaphore operations go by different names in different environments.
The most common alternatives are

Listing 2.2: Semaphore operations

1 fred.increment()
2 fred.decrement()

and

Listing 2.3: Semaphore operations

1 fred.signal()
2 fred.wait()

and

8 Semaphores

• In general, there is no way to know before a thread decrements a
semaphore whether it will block or not (in specific cases you might be
able to prove that it will or will not).

• After a thread increments a semaphore and another thread gets woken
up, both threads continue running concurrently. There is no way to know
which thread, if either, will continue immediately.

• When you signal a semaphore, you don’t necessarily know whether another
thread is waiting, so the number of unblocked threads may be zero or one.

Finally, you might want to think about what the value of the semaphore
means. If the value is positive, then it represents the number of threads that
can decrement without blocking. If it is negative, then it represents the number
of threads that have blocked and are waiting. If the value is zero, it means there
are no threads waiting, but if a thread tries to decrement, it will block.

2.2 Syntax

In most programming environments, an implementation of semaphores is avail-
able as part of the programming language or the operating system. Different
implementations sometimes offer slightly different capabilities, and usually re-
quire different syntax.

In this book I will use a simple pseudo-language to demonstrate how
semaphores work. The syntax for creating a new semaphore and initializing
it is

Listing 2.1: Semaphore initialization syntax

1 fred = Semaphore(1)

The function Semaphore is a constructor; it creates and returns a new
Semaphore. The initial value of the semaphore is passed as a parameter to
the constructor.

The semaphore operations go by different names in different environments.
The most common alternatives are

Listing 2.2: Semaphore operations

1 fred.increment()
2 fred.decrement()

and

Listing 2.3: Semaphore operations

1 fred.signal()
2 fred.wait()

and

2.3 Why semaphores? 9

Listing 2.4: Semaphore operations

1 fred.V()
2 fred.P()

It may be surprising that there are so many names, but there is a reason for the
plurality. increment and decrement describe what the operations do. signal
and wait describe what they are often used for. And V and P were the original
names proposed by Dijkstra, who wisely realized that a meaningless name is
better than a misleading name1.

I consider the other pairs misleading because increment and decrement
neglect to mention the possibility of blocking and waking, and semaphores are
often used in ways that have nothing to do with signal and wait.

If you insist on meaningful names, then I would suggest these:

Listing 2.5: Semaphore operations

1 fred.increment_and_wake_a_waiting_process_if_any()
2 fred.decrement_and_block_if_the_result_is_negative()

I don’t think the world is likely to embrace either of these names soon. In
the meantime, I choose (more or less arbitrarily) to use signal and wait.

2.3 Why semaphores?

Looking at the definition of semaphores, it is not at all obvious why they are use-
ful. It’s true that we don’t need semaphores to solve synchronization problems,
but there are some advantages to using them:

• Semaphores impose deliberate constraints that help programmers avoid
errors.

• Solutions using semaphores are often clean and organized, making it easy
to demonstrate their correctness.

• Semaphores can be implemented efficiently on many systems, so solutions
that use semaphores are portable and usually efficient.

1Actually, V and P aren’t completely meaningless to people who speak Dutch.

2.3 Why semaphores? 9

Listing 2.4: Semaphore operations

1 fred.V()
2 fred.P()

It may be surprising that there are so many names, but there is a reason for the
plurality. increment and decrement describe what the operations do. signal
and wait describe what they are often used for. And V and P were the original
names proposed by Dijkstra, who wisely realized that a meaningless name is
better than a misleading name1.

I consider the other pairs misleading because increment and decrement
neglect to mention the possibility of blocking and waking, and semaphores are
often used in ways that have nothing to do with signal and wait.

If you insist on meaningful names, then I would suggest these:

Listing 2.5: Semaphore operations

1 fred.increment_and_wake_a_waiting_process_if_any()
2 fred.decrement_and_block_if_the_result_is_negative()

I don’t think the world is likely to embrace either of these names soon. In
the meantime, I choose (more or less arbitrarily) to use signal and wait.

2.3 Why semaphores?

Looking at the definition of semaphores, it is not at all obvious why they are use-
ful. It’s true that we don’t need semaphores to solve synchronization problems,
but there are some advantages to using them:

• Semaphores impose deliberate constraints that help programmers avoid
errors.

• Solutions using semaphores are often clean and organized, making it easy
to demonstrate their correctness.

• Semaphores can be implemented efficiently on many systems, so solutions
that use semaphores are portable and usually efficient.

1Actually, V and P aren’t completely meaningless to people who speak Dutch.

Operation names?



Basic synchronization patterns
1. Rendezvous

2. Mutual exclusion (Mutex)

3. Multiplex

4. Generalized rendezvous


- Barrier & Turnstile



1. Rendezvous

12 Basic synchronization patterns

This use of semaphores is the basis of the names signal and wait, and
in this case the names are conveniently mnemonic. Unfortunately, we will see
other cases where the names are less helpful.

Speaking of meaningful names, sem isn’t one. When possible, it is a good
idea to give a semaphore a name that indicates what it represents. In this case
a name like a1Done might be good, so that a1done.signal() means “signal
that a1 is done,” and a1done.wait() means “wait until a1 is done.”

3.2 Rendezvous

Puzzle: Generalize the signal pattern so that it works both ways. Thread A has
to wait for Thread B and vice versa. In other words, given this code

Thread A

1 statement a1
2 statement a2

Thread B

1 statement b1
2 statement b2

we want to guarantee that a1 happens before b2 and b1 happens before a2. In
writing your solution, be sure to specify the names and initial values of your
semaphores (little hint there).

Your solution should not enforce too many constraints. For example, we
don’t care about the order of a1 and b1. In your solution, either order should
be possible.

This synchronization problem has a name; it’s a rendezvous. The idea is
that two threads rendezvous at a point of execution, and neither is allowed to
proceed until both have arrived.

Problem: Ensure that a1<b2, b1<a2

rendezvous 

point

Hint: use the following variables

aArrived = Semaphore(0) 
bArrived = Semaphore(0)



aArrived = Semaphore(0) 
bArrived = Semaphore(0)



1. Rendezvous
3.2 Rendezvous 15

3.2.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1
2 aArrived.signal()
3 bArrived.wait()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal()
3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.2.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

aArrived = Semaphore(0) 
bArrived = Semaphore(0)



2. Mutual exclusion

16 Basic synchronization patterns

3.3 Mutex

A second common use for semaphores is to enforce mutual exclusion. We have al-
ready seen one use for mutual exclusion, controlling concurrent access to shared
variables. The mutex guarantees that only one thread accesses the shared vari-
able at a time.

A mutex is like a token that passes from one thread to another, allowing one
thread at a time to proceed. For example, in The Lord of the Flies a group of
children use a conch as a mutex. In order to speak, you have to hold the conch.
As long as only one child holds the conch, only one can speak1.

Similarly, in order for a thread to access a shared variable, it has to “get”
the mutex; when it is done, it “releases” the mutex. Only one thread can hold
the mutex at a time.

Puzzle: Add semaphores to the following example to enforce mutual exclu-
sion to the shared variable count.

Thread A

count = count + 1

Thread B

count = count + 1

1Although this metaphor is helpful, for now, it can also be misleading, as you will see in
Section 5.5

Hint: use the following variable

Problem: Ensure that critical sections do not overlap

mutex = Semaphore(1)



3.4 Multiplex 19

3.3.2 Mutual exclusion solution

Here is a solution:
Thread A

mutex.wait()
# critical section
count = count + 1

mutex.signal()

Thread B

mutex.wait()
# critical section
count = count + 1

mutex.signal()

Since mutex is initially 1, whichever thread gets to the wait first will be able
to proceed immediately. Of course, the act of waiting on the semaphore has the
effect of decrementing it, so the second thread to arrive will have to wait until
the first signals.

I have indented the update operation to show that it is contained within the
mutex.

In this example, both threads are running the same code. This is sometimes
called a symmetric solution. If the threads have to run different code, the solu-
tion is asymmetric. Symmetric solutions are often easier to generalize. In this
case, the mutex solution can handle any number of concurrent threads without
modification. As long as every thread waits before performing an update and
signals after, then no two threads will access count concurrently.

Often the code that needs to be protected is called the critical section, I
suppose because it is critically important to prevent concurrent access.

In the tradition of computer science and mixed metaphors, there are several
other ways people sometimes talk about mutexes. In the metaphor we have been
using so far, the mutex is a token that is passed from one thread to another.

In an alternative metaphor, we think of the critical section as a room, and
only one thread is allowed to be in the room at a time. In this metaphor,
mutexes are called locks, and a thread is said to lock the mutex before entering
and unlock it while exiting. Occasionally, though, people mix the metaphors
and talk about “getting” or “releasing” a lock, which doesn’t make much sense.

Both metaphors are potentially useful and potentially misleading. As you
work on the next problem, try out both ways of thinking and see which one
leads you to a solution.

3.4 Multiplex

Puzzle: Generalize the previous solution so that it allows multiple threads to
run in the critical section at the same time, but it enforces an upper limit on
the number of concurrent threads. In other words, no more than n threads can
run in the critical section at the same time.

This pattern is called a multiplex. In real life, the multiplex problem occurs
at busy nightclubs where there is a maximum number of people allowed in the
building at a time, either to maintain fire safety or to create the illusion of
exclusivity.

2. Mutual exclusion

mutex = Semaphore(1)



3. Multiplex

3.5 Barrier 21

3.4.1 Multiplex solution

To allow multiple threads to run in the critical section, just initialize the
semaphore to n, which is the maximum number of threads that should be al-
lowed.

At any time, the value of the semaphore represents the number of additional
threads that may enter. If the value is zero, then the next thread will block
until one of the threads inside exits and signals. When all threads have exited
the value of the semaphore is restored to n.

Since the solution is symmetric, it’s conventional to show only one copy of the
code, but you should imagine multiple copies of the code running concurrently
in multiple threads.

Listing 3.1: Multiplex solution

1 multiplex.wait()
2 critical section
3 multiplex.signal()

What happens if the critical section is occupied and more than one thread
arrives? Of course, what we want is for all the arrivals to wait. This solution
does exactly that. Each time an arrival joins the queue, the semaphore is decre-
mented, so that the value of the semaphore (negated) represents the number of
threads in queue.

When a thread leaves, it signals the semaphore, incrementing its value and
allowing one of the waiting threads to proceed.

Thinking again of metaphors, in this case I find it useful to think of the
semaphore as a set of tokens (rather than a lock). As each thread invokes wait,
it picks up one of the tokens; when it invokes signal it releases one. Only a
thread that holds a token can enter the room. If no tokens are available when
a thread arrives, it waits until another thread releases one.

In real life, ticket windows sometimes use a system like this. They hand
out tokens (sometimes poker chips) to customers in line. Each token allows the
holder to buy a ticket.

3.5 Barrier

Consider again the Rendezvous problem from Section 3.2. A limitation of the
solution we presented is that it does not work with more than two threads.

Puzzle: Generalize the rendezvous solution. Every thread should run the
following code:

Listing 3.2: Barrier code

1 rendezvous
2 critical point

Permits N threads through into their critical sections

multiplex = Semaphore(N)



4. Generalized Rendezvous
3.5 Barrier 23

3.5.1 Barrier hint

For many of the problems in this book I will provide hints by presenting the
variables I used in my solution and explaining their roles.

Listing 3.3: Barrier hint

1 n = the number of threads
2 count = 0
3 mutex = Semaphore(1)
4 barrier = Semaphore(0)

count keeps track of how many threads have arrived. mutex provides exclu-
sive access to count so that threads can increment it safely.

barrier is locked (zero or negative) until all threads arrive; then it should
be unlocked (1 or more).

3.5 Barrier 21

3.4.1 Multiplex solution

To allow multiple threads to run in the critical section, just initialize the
semaphore to n, which is the maximum number of threads that should be al-
lowed.

At any time, the value of the semaphore represents the number of additional
threads that may enter. If the value is zero, then the next thread will block
until one of the threads inside exits and signals. When all threads have exited
the value of the semaphore is restored to n.

Since the solution is symmetric, it’s conventional to show only one copy of the
code, but you should imagine multiple copies of the code running concurrently
in multiple threads.

Listing 3.1: Multiplex solution

1 multiplex.wait()
2 critical section
3 multiplex.signal()

What happens if the critical section is occupied and more than one thread
arrives? Of course, what we want is for all the arrivals to wait. This solution
does exactly that. Each time an arrival joins the queue, the semaphore is decre-
mented, so that the value of the semaphore (negated) represents the number of
threads in queue.

When a thread leaves, it signals the semaphore, incrementing its value and
allowing one of the waiting threads to proceed.

Thinking again of metaphors, in this case I find it useful to think of the
semaphore as a set of tokens (rather than a lock). As each thread invokes wait,
it picks up one of the tokens; when it invokes signal it releases one. Only a
thread that holds a token can enter the room. If no tokens are available when
a thread arrives, it waits until another thread releases one.

In real life, ticket windows sometimes use a system like this. They hand
out tokens (sometimes poker chips) to customers in line. Each token allows the
holder to buy a ticket.

3.5 Barrier

Consider again the Rendezvous problem from Section 3.2. A limitation of the
solution we presented is that it does not work with more than two threads.

Puzzle: Generalize the rendezvous solution. Every thread should run the
following code:

Listing 3.2: Barrier code

1 rendezvous
2 critical point

Problem: Generalize the rendezvous solution. Every thread should run the  
	 following code

Hint: use the following variables



3.5 Barrier 23

3.5.1 Barrier hint

For many of the problems in this book I will provide hints by presenting the
variables I used in my solution and explaining their roles.

Listing 3.3: Barrier hint

1 n = the number of threads
2 count = 0
3 mutex = Semaphore(1)
4 barrier = Semaphore(0)

count keeps track of how many threads have arrived. mutex provides exclu-
sive access to count so that threads can increment it safely.

barrier is locked (zero or negative) until all threads arrive; then it should
be unlocked (1 or more).



4. Generalized Rendezvous
  1 rendezvous 
  2  
  3 mutex.wait() 
  4     count = count + 1 
  5 mutex.signal()     
  6  
  7 if count == n: barrier.signal() 
  8  
  9 barrier.wait() 
  10 barrier.signal() 
  11  
  12 critical point

“turnstile”

ɡ open the 

floodgates 

ɠ threads pile 

up here

ɢ each thread 

signals another



4. Generalized Rendezvous
  1 rendezvous 
  2  
  3 mutex.wait() 
  4     count = count + 1 
  5 mutex.signal()     
  6  
  7 if count == n: turnstile.signal() 
  8  
  9 turnstile.wait() 
  10 turnstile.signal() 
  11  
  12 critical point

what is the value of turnstile when all threads 

reach the critical point?



4. Generalized Rendezvous
  1 rendezvous 
  2  
  3 mutex.wait() 
  4     count = count + 1 
  5 mutex.signal()     
  6  
  7 if count == n: turnstile.signal() 
  8  
  9 turnstile.wait() 
  10 turnstile.signal() 
  11  
  12 critical point

between 1 and n

threads signal here

balanced # of

waits/signals

value of turnstile is in range [1,n]

can we eliminate this non-determinism?

threads may be 

preempted here



4. Generalized Rendezvous
  1 rendezvous 
  2  
  3 mutex.wait() 
  4     count = count + 1 
  5     if count == n: turnstile.signal() 
  6 mutex.signal() 
  7  
  8 turnstile.wait() 
  9 turnstile.signal() 
  10  
  11 critical point

value of turnstile at critical point is predictably 1

(but it is no longer a usable barrier)



4. Generalized Rendezvous
3.6 Reusable barrier 37

3.6.3 Reusable barrier non-solution #2

This attempt fixes the previous error, but a subtle problem remains.

Listing 3.8: Reusable barrier non-solution

1 rendezvous
2
3 mutex.wait()
4 count += 1
5 if count == n: turnstile.signal()
6 mutex.signal()
7
8 turnstile.wait()
9 turnstile.signal()

10
11 critical point
12
13 mutex.wait()
14 count -= 1
15 if count == 0: turnstile.wait()
16 mutex.signal()

In both cases the check is inside the mutex so that a thread cannot be
interrupted after changing the counter and before checking it.

Tragically, this code is still not correct. Remember that this barrier will be
inside a loop. So, after executing the last line, each thread will go back to the
rendezvous.

Puzzle: Identify and fix the problem.

turnstile reset

does this work reliably?

A thread may “lap” the other threads,

mess up count, and fail to block  
before the critical point the next time.



4. Generalized Rendezvous
Problem: Build a generalized, reusable rendezvous solution — i.e., where  
	 threads all rendezvous again after each time through the CS

Hint: use the following variables

3.6 Reusable barrier 39

3.6.4 Reusable barrier hint

As it is currently written, this code allows a precocious thread to pass through
the second mutex, then loop around and pass through the first mutex and the
turnstile, effectively getting ahead of the other threads by a lap.

To solve this problem we can use two turnstiles.

Listing 3.9: Reusable barrier hint

1 turnstile = Semaphore(0)
2 turnstile2 = Semaphore(1)
3 mutex = Semaphore(1)

Initially the first is locked and the second is open. When all the threads
arrive at the first, we lock the second and unlock the first. When all the threads
arrive at the second we relock the first, which makes it safe for the threads to
loop around to the beginning, and then open the second.



3.6 Reusable barrier 39

3.6.4 Reusable barrier hint

As it is currently written, this code allows a precocious thread to pass through
the second mutex, then loop around and pass through the first mutex and the
turnstile, effectively getting ahead of the other threads by a lap.

To solve this problem we can use two turnstiles.

Listing 3.9: Reusable barrier hint

1 turnstile = Semaphore(0)
2 turnstile2 = Semaphore(1)
3 mutex = Semaphore(1)

Initially the first is locked and the second is open. When all the threads
arrive at the first, we lock the second and unlock the first. When all the threads
arrive at the second we relock the first, which makes it safe for the threads to
loop around to the beginning, and then open the second.



4. Generalized Rendezvous
 1  # rendezvous 
 2 
 3  mutex.wait()  
 4      count += 1 
 5     if count == n:  
 6         turnstile2.wait()  
 7         turnstile.signal() 
 8 mutex.signal() 
 9 
 10 turnstile.wait()  
 11 turnstile.signal() 
 12  
 13 # critical point 
 14  
 15 mutex.wait()  
 16     count -= 1 
 17     if count == 0:  
 18         turnstile.wait() 
 19         turnstile2.signal()  
 20 mutex.signal() 
 21  
 22 turnstile2.wait()  
 23 turnstile2.signal()

lock the second turnstile,

unlock the first 

lock the first turnstile,

unlock the second 

first turnstile

second turnstile



“Barrier” type
class Barrier: 
    def __init__(self, n): 
        self.n = n 
        self.count = 0 
        self.mutex = Semaphore(1) 
        self.turnstile = Semaphore(0) 
        self.turnstile2 = Semaphore(1) 
         
    def phase1(self);         
        self.mutex.wait()  
            self.count += 1 
            if self.count == self.n:  
                self.turnstile2.wait()  
                self.turnstile.signal() 
        self.mutex.signal() 
        self.turnstile.wait()  
        self.turnstile.signal()

    def phase2(self): 
        self.mutex.wait()  
            self.count -= 1 
            if self.count == 0:  
                self.turnstile.wait() 
                self.turnstile2.signal()  
        self.mutex.signal()         
        self.turnstile2.wait()  
        self.turnstile2.signal() 

    def wait(self): 
        self.phase1() 
        self.phase2()



Classical synchronization problems
1. Producer/Consumer

2. Readers/Writers

3. Dining Philosophers



1. Producer/Consumer (revisited)

# Consumer 
item = buffer.get() 
consume(item)

# Producer 
item = produce() 
buffer.put(item)

Problem: producer & consumer threads repeatedly accessing a finite,  
	 non-thread-safe buffer

Hint: use the following variables

mutex  = Semaphore(1) 
items  = Semaphore(0) 
spaces = Semaphore(buffer.capacity())



mutex  = Semaphore(1) 
items  = Semaphore(0) 
spaces = Semaphore(buffer.capacity())



1. Producer/Consumer (revisited)

# Consumer 

items.wait() 

mutex.wait() 
    item = buffer.get() 
mutex.signal() 

spaces.signal() 

consume(item)

# Producer 

item = produce() 

spaces.wait() 

mutex.wait() 
    buffer.put(item) 
mutex.signal() 

items.signal()



2. Readers/Writers
Problem: unlimited # of readers allowed to access shared resource at once,  
	 but at most one writer; no readers while writer is accessing resource


- i.e., categorical mutex

- can model access to the resource as a “room”, where any # of readers may 

occupy the room, but it must be vacated for a single writer to enter

Hint: use the following variables

n_readers = 0 
mutex     = Semaphore(1) 
roomEmpty = Semaphore(1)



n_readers = 0 
mutex     = Semaphore(1) 
roomEmpty = Semaphore(1)



2. Readers/Writers
# Readers 

mutex.wait() 
    n_readers += 1 
    if n_readers == 1: 
        roomEmpty.wait() 
mutex.signal() 

    # critical section 

mutex.wait() 
    n_readers -= 1 
    if n_readers == 0: 
        roomEmpty.signal() 
mutex.signal()

# Writers 

roomEmpty.wait() 

    # critical section 

roomEmpty.signal()

first reader blocks on roomEmpty and  
bars other readers from crossing mutex



“Lightswitch” pattern
class Lightswitch: 
    def __init__(self): 
        self.counter = 0 
        self.mutex = Semaphore(1) 
         
    def lock(self, switch): 
        self.mutex.wait() 
            self.counter += 1 
            if self.counter == 1: 
                switch.wait() 
        self.mutex.signal() 

    def unlock(self, switch): 
        self.mutex.wait() 
            self.counter -= 1 
            if self.counter == 0: 
                switch.signal() 
        self.mutex.signal()

- Encapsulates “first-in locks, last-out 
unlocks” synchronization semantic

# Readers 
readSwitch.lock(roomEmpty) 
    # critical section 
readSwitch.unlock(roomEmpty)

# Writers 
roomEmpty.wait() 
    # critical section 
roomEmpty.signal()

roomEmpty  = Semaphore(1) 
readSwitch = Lightswitch()



roomEmpty  = Semaphore(1) 
readSwitch = Lightswitch() 
turnstile  = Semaphore(1)

2. Readers/Writers with Lightswitch

# Readers 
readSwitch.lock(roomEmpty) 
    # critical section 
readSwitch.unlock(roomEmpty)

# Writers 
roomEmpty.wait() 
    # critical section 
roomEmpty.signal()

roomEmpty  = Semaphore(1) 
readSwitch = Lightswitch()

- Problem: a constant stream of readers 
into the room may starve writers!

- How to guarantee entry into room for 

a newly arrived writer?

- Hint:



roomEmpty  = Semaphore(1) 
readSwitch = Lightswitch() 
turnstile  = Semaphore(1)



roomEmpty  = Semaphore(1) 
readSwitch = Lightswitch() 
turnstile  = Semaphore(1)

2. No-starve Readers/Writers

# Readers 

turnstile.wait() 
turnstile.signal() 

readSwitch.lock(roomEmpty) 
    # critical section 
readSwitch.unlock(roomEmpty)

# Writers 

turnstile.wait() 

roomEmpty.wait() 
    turnstile.signal() 
    # critical section 
roomEmpty.signal()

writer blocks turnstile while waiting on

roomEmpty, preventing readers from


filing into room

when last reader leaves the room,

writer enters and releases turnstile



3. Dining Philosophers
Problem: Philosophers are seated about a round table, each with a plate of 

spaghetti in front of, and a fork to either side of them — adjacent 
philosophers share a fork


- Philosophers alternate between thinking and eating

- To eat, a philosopher needs to use both forks


- A fork can only be in use by one philosopher

- Philosophers should not be starved (of spaghetti),  

and cannot predict how others will behave



3. Dining Philosophers
- Simple setup: model forks as semaphores

forks = [Semaphore(1) for i in range(5)]

# philosopher id → fork id mapping functions 

def left(i): return i 
def right(i): return (i + 1) % 5

0

1

2 3

401

2

3

4



3. DP: Naive solution

def get_forks(i): 
    fork[left(i)].wait() 
    fork[right(i)].wait() 

def put_forks(i): 
    fork[left(i)].signal() 
    fork[right(i)].signal()

- Potential deadlock! All philosophers obtain left fork and starve

0

1

2 3

401

2

3

4



3. DP: Global mutex
def get_forks(i): 
    mutex.wait() 
        fork[left(i)].wait() 
        fork[right(i)].wait() 
    mutex.signal() 

def put_forks(i): 
    fork[left(i)].signal() 
    fork[right(i)].signal()

- May prohibit a philosopher from eating when their forks are available

- Fails to maximize concurrency



3. DP: Thread limit

def get_forks(i): 
    footman.wait() 
    fork[left(i)].wait() 
    fork[right(i)].wait() 

def put_forks(i): 
    fork[left(i)].signal() 
    fork[right(i)].signal() 
    footman.signal()

- How realistic is this approach?

footman = Semaphore(4)



3. DP: Resource ordering

- Order all required resources and request only in 
increasing order

- Prevents a cycle in the resource allocation graph 

- How realistic is this approach?

def get_forks(i): 
    for i in sorted([left(i), right(i)]): 
        fork[i].wait() 0

1

2 3

401

2

3

4



- Idea: philosophers announce their 
state ∈ {thinking, eating, hungry}

- Can only eat if neighbors are both 

not eating

- When done eating, check if 

neighbor is hungry and help them 
eat, if possible

3. DP: Tanenbaum’s solution
def get_fork(i): 
    mutex.wait() 
        state[i] = 'hungry' 
        test(i) 
    mutex.signal() 
    sem[i].wait() 

def put_fork(i): 
    mutex.wait() 
        state[i] = 'thinking' 
        test(right(i)) 
        test(left(i)) 
    mutex.signal() 

def test(i): 
    if state[i] == 'hungry' \ 
       and state[left(i)] != 'eating' \ 
       and state[right(i)] != 'eating': 
        state[i] = 'eating' 
        sem[i].signal()

state = ['thinking'] * 5 
sem = [Semaphore(0) for i in range(5)] 
mutex = Semaphore(1)



T

T

T

TT



H

T

T

TT



E

T

T

TT



E

T

T

HT



E

T

T

ET



E

H

T

ET



E

H

H

ET



E

H

H

EH

(let’s mess with this guy)



E

H

H

TH



E

H

E

TH



T

H

E

TH



T

H

E

TE



H

H

E

HE



H

H

E

HT



E

H

E

HT



E

H

T

HT



E

H

T

ET



E

H

H

EH



H

H

E

HE



E

H

H

EH



E

H

H

EH

(starves)



§Summary



Concurrency is desirable
- Can help improve CPU and I/O utilization


- By blocking only part of a task/process instead of the whole thing

- May leverage parallelism for increase in performance


- Limited by parallel portion of workload (Amdhal’s/Gustafson’s)

- May also help logically partition a task into discrete subtasks



Concurrency relies on the OS & HW
- The kernel is the original concurrent program

- Without kernel-level threads, we cannot translate user-level concurrency 

into performance gains

- Hardware support is needed to build robust and efficient mechanisms for 

concurrent programming

- E.g., atomic instructions, interrupt mechanisms



Concurrency is hard!
- Concurrent tasks overlap non-deterministically, and when they access 

shared data, we may end up with race conditions

- Synchronizing concurrent tasks to eliminate race conditions while 

maximizing efficiency, eliminating starvation, etc., is hard!

- Requires thinking in multiple dimensions and accounting for nearly 

infinite scenarios

- When not done carefully, may entangle application and synchronization 

logic, and make code difficult to maintain


