S Semaphores “!} j‘

ILLINOIS TECH | College of Computing

Reference: LBoS

- Little Book of Semaphores, A e
by Allen Downey

Green Tea Press

Free books by Allen B. Downey

- Focuses on synchronization
using semaphores

- Includes classical and

non-traditional probl ems The Little Book of Semaphores

by Allen B. Downey

- Lots of sample code Iin
quasi-Python syntax

Download The Little Book of Semaphores in PDF.

The Little Book of Semaphores is a free (in both senses of the word) text-
book that introduces the principles of synchronization for concurrent
programming.

ILLINOIS TECH | College of Computing

Semaphore rules

1. When you create the semaphore, you can initialize its value to any integer,
but after that the only operations you are allowed to perform are increment
(increase by one) and decrement (decrease by one). You cannot read the
current value of the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the

hread blocks itself and cannot continue until another thread increments
che semaphore.

3. When a thread increments the semaphore, if there are other threads wait-
ing, one of the waiting threads gets unblocked.

ILLINOIS TECH | College of Computing

Initialization & Operations

1 fred = Semaphore(1)

Operation names?

1 fred.increment_and_wake_a_waiting_process_if_any ()

2 fred.decrement_and_block_if_the_result_is_negative()
1 fred.increment ()

2 fred.decrement ()

fred.signal()
fred.wait ()

ILLINOIS TECH | College of Computing

Basic synchronization patterns

1. Rendezvous

2. Mutual exclusion (Mutex)
3. Multiplex

4. Generalized rendezvous

- Barrier & Turnstile

ILLINOIS TECH

College of Computing

1. Rendezvous

Problem: Ensure that a1<b2, b1<a?2

Thread A

1 statement al

2 statement a2

Hint: use the following variables

Semaphore (0)
Semaphore (0)

aArrived
bArrived

Thread B rendezvous
point
_...1 statement bl 3,

2 statement b2

ILLINOIS TECH | College of Computing

aArrived = Semaphore(0)
bArrived = Semaphore(0)

ILLINOIS TECH | College of Computing

1. Rendezvous

aArrived = Semaphore(0)
bArrived = Semaphore(0)
Thread A Thread B
1 statement al 1 statement bl
2 aArrived.signal() 2 DbArrived.signal()
3 DbArrived.wait() 3 alArrived.wait()
4 statement a2 4 statement b2

ILLINOIS TECH | College of Computing

2. Mutual exclusion

Problem: Ensure that critical sections do not overlap

Thread A Thread B

count = count + 1 count = count + 1

Hint: use the following variable

mutex = Semaphore(1)

ILLINOIS TECH

College of Computing

2. Mutual exclusion

mutex = Semaphore(1)

Thread A Thread B
mutex.wait () mutex.wait ()
critical section # critical section
count = count + 1 count = count + 1
mutex.signal () mutex.signal ()

ILLINOIS TECH ‘ College of Computing

3. Multiplex

multiplex = Semaphore(N)

I multiplex.wait()
2 critical section
3 multiplex.signal()

Permits N threads through into their critical sections

ILLINOIS TECH | College of Computing

4. Generalized Rendezvous

Problem: Generalize the rendezvous solution. Every thread should run the
following code

1 rendezvous
2 critical point

Hint: use the following variables

n = the number of threads
count = 0

mutex = Semaphore (1)
barrier = Semaphore(0)

0 DN =

ILLINOIS TECH | College of Computing

=~ QO DN =

n = the number of threads
count = 0

mutex = Semaphore (1)
barrier = Semaphore(0)

ILLINOIS TECH | College of Computing

4. Generalized Rendezvous

rendezvous

mutex.wait ()
count = count + 1

(2 open the

mutex.signal ()
floodgates

\

if count == n: barrier.signal()

barrier.wait ()

(D threads pile ——
up here

barrier.signal () turnstile

N — O © 00 -1 O U i O N

critical point

@ each thread
signals another

ILLINOIS TECH | College of Computing

4. Generalized Rendezvous

rendezvous
mutex.wait ()

count = count + 1
mutex.signal ()

if count == n: turnstile.signal()

turnstile.wait ()
turnstile.signal ()

N — O © 00 -1 O U i O N

critical point

what Is the value of turnstile when all threads
reach the critical point?

ILLINOIS TECH | College of Computing

4. Generalized Rendezvous

1 d
threads may be 2 Tengeavous
reempted here
P P 3 mutex.wait ()
4 count = count + 1
betwee_n Tandn D mutex.signal ()
threads signal here N, 6
— if count == n: turnstile.signal()
8
. 9 turnstile.wait ()
/ 10 turnstile.signal ()
balanced # of 11
waits/signals 12 critical point

value of turnstile is in range [1,N]

can we eliminate this non-determinism?
ILLINOIS TECH | College of Computing

4. Generalized Rendezvous

rendezvous

mutex.wait ()

count = count + 1

if count == n: turnstile.signal()
mutex.signal ()

turnstile.wait ()
turnstile.signal ()

—_— O O© 00 J O O i W N =

—

critical point

value of turnstile at critical point is predictably
(but it is no longer a usable barrier)

ILLINOIS TECH | College of Computing

4. Generalized Rendezvous

turnstile reset

'O U WO — O © 00~ U N — |«

rendezvous

mutex.wait()
count += 1V

if count == n: turnstile.signal()

mutex.signal ()

turnstile.wait ()
turnstile.signal ()

critical point

mutex.wait ()
count —= 19

if count ==-0: turﬁ%tile.wait()

mutex.signal ()

. Athread may “lap” the other threads,

mess up count, and fail to block
before the critical point the next time.

does”t.his work reliably?

ILLINOIS TECH | College of Computing

4. Generalized Rendezvous

Problem: Build a generalized, reusable rendezvous solution — i.e., where
threads all rendezvous again after each time through the CS

Hint: use the following variables

1 turnstile = Semaphore(0)
2 turnstile2 = Semaphore(1)
3 mutex = Semaphore(1)

ILLINOIS TECH | College of Computing

1 turnstile = Semaphore(0)
2 turnstile2 = Semaphore(1)
3 mutex = Semaphore(1)

ILLINOIS TECH | College of Computing

4. Generalized Rendezvous

lock the second turnstile, -
unlock the first

first turnstile— {

lock the first turnstile, B
unlock the second r {

second turnstile— {

P——

0O NO Ok WD -

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23

rendezvous

mutex.wait ()
count += 1
if count == n:
turnstile2.wait ()
turnstile.signal()
mutex.signal ()

turnstile.wait ()
turnstile.signal ()

critical point

mutex.wait ()
count -= 1
if count ==
turnstile.wait ()
turnstile2.signal ()
mutex.signal ()

turnstile2.wait ()
turnstile2.signal ()

ILLINOIS TECH | College of Computing

“Barrier” type

def

class Barrier:

__init__(self, n):

self.n = n

self.count = O

self .mutex = Semaphore(1)
self.turnstile = Semaphore(0)
self.turnstile2 = Semaphore (1)

def phasel(self);

self .mutex.wait ()
self.count += 1
1f self.count == self.n:
self.turnstile2.wait ()
self.turnstile.signal()
self .mutex.signal ()
self.turnstile.wait ()
self.turnstile.signal()

def phase2(self):
self .mutex.wait ()
self.count -= 1
if self.count == O:
self.turnstile.wait ()
self.turnstile2.signal ()
self .mutex.signal ()
self.turnstile2.wait ()
self.turnstile2.signal ()

def wait(self):
self .phasel ()
self.phase2()

ILLINOIS TECH | College of Computing

Classical synchronization problems

1. Producer/Consumer
2. Readers/Writers
3. Dining Philosophers

ILLINOIS TECH | College of Computing

1. Producer/Consumer (revisited)

Problem: producer & consumer threads repeatedly accessing a finite,
non-thread-safe buffer

Producer # Consumer
item = produce() item = buffer.get()
buffer.put(item) consume (item)

Hint: use the following variables

mutex = Semaphore(1)
items = Semaphore(0)
spaces = Semaphore(buffer.capacity())

ILLINOIS TECH | College of Computing

mutex = Semaphore(1)
items Semaphore (0)
spaces = Semaphore(buffer.capacity())

ILLINOIS TECH | College of Computing

1. Producer/Consumer (revisited)

Producer # Consumer

item = produce() items.wait ()
spaces.wait () mutex.wait ()

item = buffer.get()
mutex.wait () mutex.signal ()
buffer.put(item)

mutex.signal () spaces.signal ()
items.signal () consume (item)

ILLINOIS TECH

College of Computing

2. Readers/Writers

Problem: unlimited # of readers allowed to access shared resource at once,
but at most one writer; no readers while writer is accessing resource

- l.e., categorical mutex

- can model access to the resource as a “room”, where any # of readers may
occupy the room, but it must be vacated for a single writer to enter

Hint: use the following variables

n_readers = 0
mutex Semaphore (1)
roomEmpty = Semaphore(1)

ILLINOIS TECH | College of Computing

n_readers = 0
mutex Semaphore (1)
roomEmpty = Semaphore(1)

ILLINOIS TECH | College of Computing

2. Readers/Writers

first reader blocks on roomEmpty and
bars other readers from crossing mutex

|

Writers
roomEmpty.wait ()
critical section

roomEmpty.signal ()

Readers

mutex.wait () <«
n_readers += 1
1f n_readers ==
roomEmpty.wait ()
mutex.signal ()

critical section

mutex.wait ()
n_readers -=1
1f n_readers ==
roomEmpty.signal ()
mutex.signal ()

ILLINOIS TECH

College of Computing

class Lightswitch:

def __init__(self):
self.counter = 0

self .mutex = Semaphore(1)

def lock(self, switch):
self .mutex.wait ()
self.counter += 1
1f self.counter ==
switch.wait ()
self .mutex.signal ()

def unlock(self, switch):
self .mutex.wait ()
self.counter -= 1
1f self.counter ==
switch.signal ()
self .mutex.signal ()

O:

“Lightswitch” pattern

Writers
roomEmpty.wait ()

critical section
roomEmpty.signal ()

Readers
readSwitch.lock(roomEmpty)
critical section

readSwitch.unlock(roomEmpty)

ILLINOIS TECH

- Encapsulates “first-in locks, last-out

unlocks” synchronization semantic
roomEmpty = Semaphore(1l)
readSwitch = Lightswitch()

College of Computing

2. Readers/Writers with Lightswitch

roomEmpty = Semaphore (1) - Problem: a constant stream of readers
readSwitch = Lightswitch() iInto the room may starve writers!

- How to guarantee entry into room for
a newly arrived writer?

Writers
roomEmpty.wait ()

critical section - +1|r1t:
roomEmpty.signal ()

roomEmpty = Semaphore (1)
readSwitch = Lightswitch()
turnstile = Semaphore(1)

Readers
readSwitch.lock(roomEmpty)

critical section
readSwitch.unlock(roomEmpty)

ILLINOIS TECH | College of Computing

roomEmpty Semaphore (1)
readSwitch = Lightswitch()
turnstile Semaphore (1)

ILLINOIS TECH | College of Computing

2. No-starve Readers/Writers

roomEmpty = Semaphore (1)
readSwitch = Lightswitch()
turnstile Semaphore (1)

writer blocks turnstile while waiting on
roomEmpty, preventing readers from
filing into room

Writers

turnstile.wait () <

4’///////// # Readers (///
4’///////// turnstile.wait ()

turnstile.signal ()

roomEmpty.wait () <
turnstile.signal ()
critical section

roomEmpty.signal ()

readSwitch.lock(roomEmpty)
critical section
~» readSwitch.unlock(roomEmpty)

when last reader leaves the room,
writer enters and releases turnstile

ILLINOIS TECH | College of Computing

3. Dining Philosophers

Problem: Philosophers are seated about a round table, each with a plate of
spaghetti in front of, and a fork to either side of them — adjacent
philosophers share a fork

- Philosophers alternate between thinking and eating
- To eat, a philosopher needs to use both forks
- A fork can only be in use by one philosopher

- Philosophers should not be starved (of spaghetti),
and cannot predict how others will behave

ILLINOIS TECH

College of Computing

3. Dining Philosophers

- Simple setup: model forks as semaphores

forks = [Semaphore(1l) for i in range(5)]

philosopher id -+ fork id mapping functions

def left(i): return 1
def right(i): return (i + 1) % 5

ILLINOIS TECH ‘ College of Computing

3. DP: Naive solution

def get_forks(i):
fork[left(i)].wait ()
fork[right(i)].wait ()

def put_forks(i):
fork[left(i)].signal()
fork[right(i)].signal()

- Potential deadlock! All philosophers obtain left fork and starve

ILLINOIS TECH ‘ College of Computing

3. DP: Global mutex

def get_forks(i):
mutex.wait ()
fork[left(i)].wait ()
fork[right(i)].wait ()
mutex.signal ()

def put_forks(i):
fork[left(i)].signal()
fork[right(i)].signal()

- May prohibit a philosopher from eating when their forks are available

- Fails to maximize concurrency

ILLINOIS TECH | College of Computing

3. DP: Thread limit

footman = Semaphore(4)

def get_forks(i):
footman.wait ()
fork[left(i)] .wait ()
fork[right(i)].wait ()

def put_forks(i):
fork[left(i)].signal()
fork[right(i)].signal()
footman.signal ()

- How realistic is this approach?

ILLINOIS TECH | College of Computing

3. DP: Resource ordering

def get_forks(i):
for i in sorted([left(i), right(i)]):
fork[i] .wait ()

- Order all required resources and request only in
Increasing order

- Prevents a cycle in the resource allocation graph

- How realistic is this approach?

ILLINOIS TECH

College of Computing

3. DP: Tanenbaum’s solution

- ldea: philosophers announce their
state e {thinking, eating, hungry}

- Can only eat if neighbors are both
not eating

- When done eating, check if
neighbor is hungry and help them
eat, If possible

state = ['thinking'] * 5
sem = [Semaphore(0) for i in range(5)]
mutex = Semaphore (1)

def get_fork(i):
mutex.wait ()
state[i] = 'hungry'
test (i)
mutex.signal ()
sem[i] .wait ()

def put_fork(i):
mutex.wait ()
state[i] = 'thinking'
test (right (i))
test (left(i))
mutex.signal ()

def test(i):

if stateli] == 'hungry' \
and statel[left(i)] != 'eating' \
and statelright(i)] != 'eating':
state[i] = 'eating'

sem[i] .signal ()

ILLINOIS TECH

College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

(let’s mess with this guy)

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

ILLINOIS TECH | College of Computing

(starves)

ILLINOIS TECH | College of Computing

S Summary

ILLINOIS TECH | College of Computing

Concurrency is desirable

- Can help improve CPU and |/O utilization

- By blocking only part of a task/process instead of the whole thing
- May leverage parallelism for increase in performance

- Limited by parallel portion of workload (Amdhal’s/Gustafson’s)

- May also help logically partition a task into discrete subtasks

ILLINOIS TECH | College of Computing

Concurrency relies on the OS & HW

- The kernel is the original concurrent program

- Without kernel-level threads, we cannot translate user-level concurrency
iInto performance gains

- Hardware support is needed to build robust and efficient mechanisms for
concurrent programming

- E.g., atomic instructions, interrupt mechanisms

ILLINOIS TECH | College of Computing

Concurrency is hard!

- Concurrent tasks overlap non-deterministically, and when they access
shared data, we may end up with race conditions

- Synchronizing concurrent tasks to eliminate race conditions while
maximizing efficiency, eliminating starvation, etc., is hard!

- Requires thinking in multiple dimensions and accounting for nearly
Infinite scenarios

- When not done carefully, may entangle application and synchronization
logic, and make code difficult to maintain

ILLINOIS TECH | College of Computing

