S Locks and locking strategies

ILLINOIS TECH | College of Computing

E.g., locking

Thread A Thread B

al count = count + 1 bl count = count + 1

ILLINOIS TECH ‘ College of Computing

E.g., locking

Thread A Thread B

al count = count + 1 bl count = count + 1

ILLINOIS TECH ‘ College of Computing

E.g., locking

Thread A Thread B

al count = count + 1 bl count = count + 1

ILLINOIS TECH ‘ College of Computing

E.g., locking

Thread A Thread B

al count = count + 1 bl count = count + 1

ILLINOIS TECH ‘ College of Computing

E.g., locking

Thread A Thread B

al count = count + 1 bl count = count + 1

count
\‘ C
\‘ m
. ®
d%y‘\~
(\ & N~~~. (\
@a ..--*
Ta TB
_ J _ J

ILLINOIS TECH ‘ College of Computing

Locking strategies

- We may use a single lock to guard access to all shared resources
- We call this a global or coarse-grained locking strategy
- Or we may assign locks to individual resources (or subsets of resources)

- We call this a fine-grained locking strategy

ILLINOIS TECH | College of Computing

E.g., coarse-grained locking

--

--

ILLINOIS TECH | College of Computing

E.g., coarse-grained locking

--

--

ILLINOIS TECH | College of Computing

E.g., coarse-grained locking

--

ILLINOIS TECH | College of Computing

Coarse-grained locking ...

... IS (typically) easier to reason about
... but results in a lot of lock contention

... may result in poor resource utilization

ILLINOIS TECH

College of Computing

E.g., fine-grained locking

ILLINOIS TECH | College of Computing

Fine-grained locking ...

.. may reduce (individual) lock contention
.. may improve resource utilization
.. can result in a lot of locking overhead

.. but can be much harder to verity correctness!

ILLINOIS TECH

College of Computing

E.g., fine-grained locking problem

deadlocked!
ILLINOIS TECH | College of Computing

E.g., lock API: pthreads “mutex”

// initialize mutex (can aflso use PTHREAD_MUTEX_INITIALIZER §on defauflts)
int pthread_mutex_init(pthread_mutex_t *mtx, pthread_mutexattr_t *attr);

// acquizne Pock on mutex (1§ mutex 14 alneady fPocked, block the calling thnead)
int pthread_mutex_lock(pthread_mutex_t *mtx);

// nelease Pock on mutex (a blocked thnead may acquize it)
int pthread_mutex_unlock(pthread_mutex_t *mtx);

// destrnoy mutex (onfy safe on an unfocked mutex)
int pthread_mutex_destroy(pthread_mutex_t *mtx);

ILLINOIS TECH | College of Computing

E.g., protecting counter increment

int counter = 0;
pthread _mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Created thread 139882746513152
Created thread 139882738120LLS
Created thread 1398827297277LL
Created thread 1398827213350L0
Created thread 1398827129L2336

void *inc(void *num) ¢
for (int i=0; 1<1000000; i++) ¢
pthread_mutex_lock(&lock);
counter += 1;

pthread_mutex_unlock(&lock); Thread 139882721335040 counter = L7823L6

3 Thread 1398827297277LL counter LO9OL&819
printf("Thread %1d counter = %d\n", pthread_self(), counter); Thread 139882738120LL8 counter 4976793
pthread_exit(NULL); Thread 1398827L6513152 counter L986816
} Thread 1398827129L2336 counter 50000060

int main() § "
pthread_t tid[5]; - Lots of lock contention!
for (int i=0; i<5; i++)§
pthread_create(&tid[i], NULL, inc, NULL);

| printECerested thread H1d\", AL, - Note that counter values are

for (int i=0; i<5; ir) { still unpredictable until the end
pthread_join(tid[i], NULL); // wait fon othen thneads

3

pthread_mutex_destroy(&lock); - Can We f|X th|S?

return ©;

ILLINOIS TECH | College of Computing

E.g., protecting counter increment

int counter = 0;
pthread _mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Created thread 1L400677136561286
Created thread 140077122168576
Created thread 140077113775872
Created thread 140077165383168
Created thread 1460677096990L6L

void *inc(void *num) ¢
pthread_mutex_lock(&lock);
for (int 1=0; i<1000000; i++) {

counter += 1;
3 Thread 140077122168576 counter 1000000

printf("Thread %1d counter = %d\n", pthread_self(), counter); Thread 1L6677113775872 counter 2l
pthread_mutex_unlock(&lock); Thread 1466771065383168 counter 3000000

— —)4
pthread_exit(NULL); Thread 1466771306561280 counter LOBBOOO
3 Thread 1460677096990L6L counter 5000000

int main() ¢ "
pthread_t tid[5]; - Less locking overhead
for (int i=0; i<5; i++)§
pthread_create(&tid[i], NULL, inc, NULL);

| printeCiereated thread 1le\n’, i) - Predictable counter outputs
for (int i=0; i<5; i++) ¢ .

} pthread_join(tid[i], NULL); // wait €on othen thneads - But V|rtua||y NnO concurrency
pthread_mutex_destroy(&lock);

return ©;

ILLINOIS TECH | College of Computing

E.g., protecting counter increment

int counter = 0;
pthread _mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Created thread 13975590319L880
Created thread 13975589L802176

void *inc(void *num
inc() { Created thread 139755886LO9LT2

pthread_mutex_lock(&lock);
for (int i=@; 1<1000000; i++) {
counter += 1;

Created thread 139755878016768
Created thread 13975586962L0O6L
3 Thread 139755903194880 counter = 1000000

printf("Thread %1d counter = %d\n", pthread_self(), counter); (hangs)
pthread_exit(NULL);
pthread_mutex_unlock(&lock);

3 . y
- Mutex isn’t released before
int main() {
pthread_t tid[5]; thread termination — remaining
for (int 1=0; i<5; i++){
pthread_create(&tid[i], NULL, inc, NULL); threads are blocked forever
printf("Created thread %1d\n", tid[i]);
3 .
for (int i=e; i<s; i++) { | - Must pay careful attention to
pthread_join(tid[i], NULL); // wait fon othen thneads
} lock usage!
pthread_mutex_destroy(&lock);
return ©;

ILLINOIS TECH | College of Computing

Lock implementation

- Basic idea: need an “acquire” function that lets only one caller through
while others block

typedef struct §{ int locked; }? lock_t;

volid acquire(lock_t *1) ¢ volid release(lock_t *1) {
while (1) { 1->locked = 0;
if (!'1->locked) { k;
1->locked = 1;
break;
3
3
3

ILLINOIS TECH | College of Computing

Lock implementation

void acquire(lock_t *1) ¢
while (1) {

if (!'1->locked)eft—ruu-_ _ :
1->locked = 1;e— problem: calling thread may be preempted

break: between testing the value of the thread
} and setting its value

3
- Race condition may allow multiple threads to acquire the lock!

- Cannot easily fix this problem in software — rely on hardware support

ILLINOIS TECH

College of Computing

“Test-and-Set” operation

- Many architectures support an atomic test-and-set operation
- E.g., on x86 we have the “atomic exchange” instruction: xchg

- Can use it to implement acquire:

note: pseudo-assembly!

acquire:
movl $1, %eax # set up "new'" value in neq
xchgl 1->locked, %eax # Awap values 1n neqg & Pock
testl %eax, %eax
jne acquilre # Apin 1§ old value # ©

ILLINOIS TECH | College of Computing

Spin lock

- This implementation ensures mutex, but acquire:

. : movl $1, Y%eax
IS Very expensiv ’
y expensive xchgl 1->locked, %eax

- Blocked threads are burning CPU time testl %eax, %eax
to repeatedly check the lock status jne acquire

- “Starvation” issue: no guarantee if/when a thread stuck looping will
acquire the lock!

ILLINOIS TECH | College of Computing

Ticket lock

- Clever starvation-free alternative to test-and-set based spinlock

typedef struct § vold acquire(lock *lock) ¢
int ticket; int tkt = lock->ticket++; // need atomic ++
int turn; while (tkt !'= lock->turn)
? lock_t; - // spin
3

lock_t lock = § 0, 0 }%;
OCK_1 10C Lo, 35 void release(lock *lock) ¢

lock->turn = lock->turn + 1;

3
- Once a thread gets a “ticket”, it will eventually acquire the lock

- Requires an atomic increment instruction; e.g., xadd on x86

ILLINOIS TECH | College of Computing

Eliminating “spin”

- Would like to minimize CPU usage of tasks blocking on a lock

- |deally: try to check/acquire lock again only when there’s good reason
(e.g., it’s been released by another thread)

- Typically rely on OS support for distinct scheduler state and explicit
unblocking mechanism

- e.d., In xXv6, processes may be “SLEEPING”, and sleep/wakeup
functions allow processes to block on and wait for notifications on
specific “channels”

ILLINOIS TECH | College of Computing

E.g., Xv6 sleep/wakeup

// Put calling prnoceiss to APeep on chan // Wake up all prnocesses APeeping on chan

void sleep(void *chan) void wakeupl(void *chan)

€ ¢
proc->chan = chan; struct proc *p;
proc->state = SLEEPING; for(p=ptable.proc; p<&ptable.proc[NPROC]; p++)
sched(); // context Awitch away §7om pnoc 1if(p->state == SLEEPING && p->chan == chan)
proc->chan = 0; p->state = RUNNABLE;

3 3

- What happens if sleep and wakeup are called concurrently?

- Race condition! Process calling sleep may either be continue to run or
be put to sleep — latter scenario Is termed a “lost wakeup”

- Fix this with mutex around critical sections

ILLINOIS TECH | College of Computing

E.g., Xv6 sleep/wakeup

void sleep(void *chan, struct spinlock *1lk) void wakeup(void *chan)
¢ ¢
if(1lk != &ptable.lock){ acquire(&ptable.lock);
acquire(&ptable.lock); wakeupl(chan);
release(lk); release(&ptable.lock);
3 3

proc->chan = chan;
proc->state = SLEEPING; void wakeupil(void *chan)
sched(); // note: schedufen neleases Pock §

proc->chan = 0; struct proc *p;

for(p=ptable.proc; p<&ptable.proc[NPROC]; p++)

if(lk != &ptable.lock){ if(p->state == SLEEPING && p->chan == chan)
release(&ptable.lock); p->state = RUNNABLE;
acquire(lk); }

3

3
- Note that acquire/release still make use of spinlocks

- But they are held only for a fairly short period of time

ILLINOIS TECH | College of Computing

E.g., sleep/wakeup in wait/exit

// Wait §on a chifd pnocess to exit // Exit the cunnent prnocess.
int wait(void) void exit(void)
] ¢
struct proc *p; struct proc *p;
int havekids, pid; acquire(&ptable.lock);
// this Pock ensunes we will not miss the wakeup // wake up panent process to neap this one
acquire(&ptable.lock); wakeupl(proc->parent);
for(;;)¢
for(p=ptable.proc; p<&ptable.proc[NPROC]; p++){ // init adopts & neaps oxnphaned chifdnen
if(p->parent != proc) for(p=ptable.proc; p<&ptable.proc[NPROC]; p++){
continue; if(p->parent == proc){
if(p->state == ZOMBIE){ p->parent = initproc;
pid = p->pid; if(p->state == ZOMBIE)
release(&ptable.lock); wakeupi(initproc);
return pid; 3
3 3
3
proc->state = ZOMBIE;
// s8Peep on channel identified by panent pnoc sched();
sleep(proc, &ptable.lock); panic(''zombie exit");
3 3

3

ILLINOIS TECH | College of Computing

Producer/Consumer problem

- One of many classical — I.e., paradigmatic — concurrent problems

- Setup: concurrent producer & consumer threads sharing a finite buffer

typedef struct § // Prnoducen (may be mone than 1)
int queue[BSIZE]; while (1) §
int n_items; L buf->queue[buf->tail] = produce();
int head; buf->tail = (buf->tail + 1) % BSIZE;
int tail; buf->n_items++;
? buffer_t; 3
S ‘ // Consumen (may be mone than 1)
: while (1) §
= consume(buf->queue[buf->head]);
I 5 buf->head = (buf->head + 1) % BSIZE;

//¢2222222222257¢7 buf->n_items--;

ILLINOIS TECH | College of Computing

Producer/Consumer problem

// Prnoducen // Consume”n

while (1) { while (1) {
buf->queue[buf->tail] = produce(); consume(buf->queue[buf->head]);
buf->tail = (buf->tail + 1) % BSIZE; buf->head = (buf->head + 1) % BSIZE;
buf->n_items++; buf->n_items--;

3 3

- Must guard access to all shared data with a mutex
- But access to shared buffer must also be carefully synchronized

- l.e., consumer may only consume from non-empty buffer,
and producer may only produce into buffer with open slots

ILLINOIS TECH | College of Computing

Producer/Consumer problem

// Producen // Consumen

while (1) ¢ while (1) ¢
while (buf->n_items == BSIZE) while (buf->n_items == 0)

; // spin bannien = // spin bannien

item = produce(); pthread_mutex_lock(&lock);
pthread_mutex_lock(&lock); item = buf->queue[buf->head];
buf->queue[buf->tail] = item; buf->head = (buf->head + 1) % BSIZE;
buf->tail = (buf->tail + 1) % BSIZE; buf->n_items--;
buf->n_items++; pthread_mutex_unlock(&lock);
pthread_mutex_unlock(&lock); consume(item);

3 3

- More subtle race condition: when consumer updates n items, multiple
producers may fall through spin barrier (and vice versa)

- Must check condition in mutex, but unlock to allow other thread to run

ILLINOIS TECH | College of Computing

Producer/Consumer problem

// Prnoducen

while (1) § - Ridiculous!
pthread_mutex_lock(&lock);

while (buf->n_items == BSIZE) §

othread mutex_ unlockCalock)s - Prefer a way to block producer until
// hope consumen decnements n_items consumer makes Space available
pthread_mutex_lock(&lock);

} C

pthread_mutex_unlock(&lock); - Slmllar tO SIeep/WakeUp

mechanism In kernel

item = produce();

pthread_mutex_lock(&lock);
buf->queue[buf->tail] = item;
buf->tail = (buf->tail + 1) % BSIZE;
buf->n_items++;
pthread_mutex_unlock(&lock);

ILLINOIS TECH | College of Computing

Condition variable

- Gives us mechanism for:
- Representing a condition used for thread synchronization
- Where a thread might wait (block) until the condition changes

- Where a thread might signal other blocked threads to wake up and
re-check the condition

ILLINOIS TECH | College of Computing

E.g., pthreads “cond”

// initialize condition vaniable (o1 ure PTHREAD_COND_INITIALIZER fon de§auflts)
int pthread_cond_init(pthread_cond_t *cv, pthread_condattr_t *attr);

// block on cv and neflease mtx (which must be hefd by calling thnead)
// mtx 18 automatically ne-acquized befone netunning
int pthread_cond_wait(pthread_cond_t *cv, pthread_mutex_t *mtx);

// unbfock one thnead that 18 bflocked on cv
int pthread_cond_signal(pthread_cond_t *cv);

// unblock all thneads that ane blocked on cv
int pthread_cond_broadcast(pthread_cond_t *cv);

ILLINOIS TECH | College of Computing

Producer/Consumer problem

pthread mutex t lock = PTHREAD _MUTEX_INITIALIZER;
pthread _cond_t has_space = PTHREAD_COND_INITIALIZER,

has items = PTHREAD COND INITIALIZER; .. released while
+ blocking
// Prnoducen 7 // Consumen B
while (1) § o while (1) §
pthread_mutex_lock(&lock); o pthread_mutex_lock(&lock); s
while (buf->n_items == BSIZE) ;f while (buf->n_items == 0) "4
pthread_cond_wait(&has_space, &lock); pthread_cond_wait(&has_items, &lock);

pthread_mutex_unlock(&lock);
item = buf->queue[buf->head];

item = produce(); buf->head = (buf->head + 1) % BSIZE;
buf->n_items--;

pthread_mutex_lock(&lock); pthread_mutex_unlock(&lock);
buf->queue[buf->tail] = item;
buf->tail = (buf->tail + 1) % BSIZE; pthread_cond_signal(&has_space);
buf->n_items++;
pthread_mutex_unlock(&lock); consume(item);

3

pthread_cond_signal(&has_items);

ILLINOIS TECH | College of Computing

