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Agenda
- Concurrency: what, why, how


- Threads and Multithreading

- Parallelization and its limits

- Writing concurrent programs


- Locks and locking strategies

- Semaphores and synchronization



§Concurrency: what, why, how



What is concurrency?
- Concurrency exists when two or more tasks overlap in their execution

- Parallelism, requiring multiple CPUs, is one way of realizing concurrency


- e.g., tasks run at the same time on different CPUs

- Concurrency can also be achieved via time-multiplexing


- e.g., via context switches on a single CPU

- Parallelism and time-multiplexing may coexist


- e.g., N tasks running on M CPUs, N > M > 1



Concurrency and Parallelism
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Non-determinism
- Both parallel and non-parallel forms of concurrency are non-deterministic


- I.e., the execution order of different portions of the overlapping tasks is 
not pre-determined


- E.g., both orderings below are possible:

assume slices  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Process-level concurrency
- Multitasking OSes inherently support process-level concurrency


- By default, processes run independently and may overlap in execution

- As we’ve seen, kernel runs each process in its own virtual sandbox


- “Share-nothing” architecture: separate memory and control flow

- Context switches triggered by traps & interrupts

- Processes cannot easily interfere with each other!



e.g., Unix fork

int glob = 0; 

main() { 
    pid_t pid; 
    for (int i=0; i<5; i++) 
        if ((pid = fork()) == 0) { 
            glob += 1; 
            printf("Child %d glob = %d\n", i, glob); 
            exit(0); 
        } else 
            printf("Parent created child %d\n", pid); 
}

Parent created child 97447 
Parent created child 97448 
Parent created child 97449 
Child 1 glob = 1 
Parent created child 97450 
Child 2 glob = 1 
Parent created child 97451 
Child 4 glob = 1 
Child 3 glob = 1 
Child 0 glob = 1

- fork creates a child process, running concurrently with the parent

- Same program (initially), but separate control flow and address space



Single thread of execution
- Processes typically begin life with a single thread of execution


- One path through the program (i.e., singular flow of control)

- One stack (that reflects the active and preceding stack frames)

- Blocking this thread (e.g., with I/O) blocks the entire process


- This model precludes intra-process concurrency

- Why might we want more than one thread?



Intra-process concurrency
- There are many scenarios where support for concurrency within a 

process may come in handy. Generally, we might want to:

1. Improve CPU utilization

2. Improve I/O utilization

3. Improve performance via parallelization (most elusive!)



1. Improve CPU utilization
- E.g., consider interleaved but independent CPU & I/O operations:

while (1) { 
    result = long_computation(); // CPU-bound operation 
    update_log_file(result);     // blocks on I/O 
} 

- Single threaded execution forces CPU-bound operation to wait for I/O 
to complete


- Logically, should be able to start a new computation while logging the 
result from the previous loop



2. Improve I/O utilization
- E.g., consider multiple operations that block on unrelated I/O:

read_from_disk1(buf1);   // block for input 
read_from_disk2(buf2);   // block for input 
read_from_network(buf3); // block for input 
process_input(buf1, buf2, buf3);  // process inputs 

- Single threaded execution forces I/O calls to take place sequentially  
— i.e., cannot start a request before the previous one completes


- Would prefer to initiate I/O operations simultaneously!



3. Improve performance
- E.g., consider independent computations over large data set:

int A[DIM][DIM], // src matrix 
    B[DIM][DIM], // src matrix 
    C[DIM][DIM]; // dest matrix 

/* C = A x B */ 
int i, j, k; 
for (i=0; i<DIM; i++) { 
    for (j=0; j<DIM; j++) { 
        C[i][j] = 0; 
        for (k=0; k<DIM; k++) 
            C[i][j] += A[i][k] * B[k][j]; 
    } 
}

each result cell can be

computed independently!



Multiple threads
- In each preceding scenario, we could use multiple threads within a single 

process, each of which runs concurrently and blocks independently

- Each thread of execution should:


- Share the address space of other threads in the same process 

- Maintain its own thread-specific state and data
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Implementing threads
- Each thread requires:


- a stack

- for maintaining function activation records, local variables, etc.


- a thread control block (thread-specific analog of the PCB)

- PC, SP, and other register values; TID; state and accounting info, etc.


- CPU time (as allocated by the scheduler)

- Threads can be implemented at either the user or kernel level



User-level (aka green) threads
- Invisible to the kernel, which continues to schedule each process as a 

single-thread of execution

- Thread data/metadata is tracked by the process (user-level code)


- Allocates stacks and TCBs as user-space data structures

- Thread scheduling and context switches are triggered by system timers 

(e.g., SIGALARM on Unix)

- Alternatively, can implement purely cooperative thread (aka “fiber”) 

multitasking — only context switch on manual “yield” call



N:1 mapping of user→kernel threads

user space

kernel space

Process P0 Process P1

thread library thread library



Task 0: glob = 0 
Task 1: glob = 1000 
Task 2: glob = 2000 
Task 0: glob = 3000 
Task 1: glob = 4000 
Task 2: glob = 5000 
Task 0: glob = 6000 
Task 1: glob = 7000 
Task 2: glob = 8000 
Task 0: glob = 9000 
Task 1: glob = 10000 
Task 2: glob = 11000 
Task 0: glob = 12000 
Task 1: glob = 13000 
Task 2: glob = 14000

void taskmain(int argc, char **argv) { 
    for (int i=0; i<3; i++) { 
        /* specify task fn, arg, stack size */ 
        taskcreate(task_fn, (void *)i, 32768); 
    } 
} 

int glob = 0; 

void task_fn(void *num) { 
    for (int i=0; i<5; i++) { 
        printf("Task %d: glob = %d\n", (int)num, glob); 
        for (int j=0; j<1000; j++) { 
            glob += 1; 
        } 
        taskyield(); /* give up CPU */ 
    } 
}

e.g., Libtask (swtch.com/libtask)

http://swtch.com/libtask/


taskcreate(void (*fn)(void*), void *arg, uint stack) 
{ 
 Task *t; 
 t = taskalloc(fn, arg, stack); 
 taskcount++; 
 id = t->id; 
 t->alltaskslot = nalltask; 
 alltask[nalltask++] = t; 
 ... 
}

static Task* 
taskalloc(void (*fn)(void*), void *arg, uint stack) 
{ 
 Task *t; 

 /* allocate the task and stack together */ 
 t = malloc(sizeof *t+stack); 
 memset(t, 0, sizeof *t); 
 t->stk = (uchar*)(t+1); 
 t->stksize = stack; 
 t->id = ++taskidgen; 
 t->startfn = fn; 
 t->startarg = arg; 

 /* do a reasonable initialization */ 
 memset(&t->context.uc, 0, sizeof t->context.uc); 
 ... 

 return t; 
}

Task **alltask;

taskyield(void) 
{ 
 taskswitch(); 
 ... 
}

taskswitch(void) 
{ 
 contextswitch(&taskrunning->context, &taskschedcontext); 
}



int swapcontext(ucontext_t *oucp, ucontext_t *ucp) { 
 if(getcontext(oucp) == 0) 
  setcontext(ucp); 
 return 0; 
}

GET: 
 movl 4(%esp), %eax /* %eax=arg */ 
 ... 
 movl %ebp, 28(%eax) 
 ... 
 movl $1, 48(%eax) /* %eax */ 
 movl (%esp), %ecx /* %eip */ 
 movl %ecx, 60(%eax) 
 leal 4(%esp), %ecx /* %esp */ 
 movl %ecx, 72(%eax) 
 movl $0, %eax 
 ret 

SET: 
 movl 4(%esp), %eax /* %eax=arg */ 
 ... 
 movl 28(%eax), %ebp 
 ... 
 movl 72(%eax), %esp 
 pushl 60(%eax) /* new %eip */ 
 movl 48(%eax), %eax 
 ret

#define setcontext(u) SET(&(u)->uc_mcontext) 
#define getcontext(u) GET(&(u)->uc_mcontext)

struct mcontext { 
 ... 
 int mc_ebp; 
 ... 
 int mc_ecx; 
 int mc_eax; 
 ... 
 int mc_eip; 
 int mc_cs; 
 int mc_eflags; 
 int mc_esp; 
 ... 
};

struct ucontext { 
 mcontext_t uc_mcontext; 
 ... 
};

void contextswitch(Context *from, Context *to) { 
 swapcontext(&from->uc, &to->uc); 
 ... 
}



User-level threads pros/cons
- Pros


- Lightweight implementation

- No kernel overhead


- Context switching is fast

- No need to switch to kernel


- Portable (OS-independent)

- Cons

- Reinvents the wheel (scheduler)

- Cannot run on multiple CPUs 

(no parallelism)

- Only one scheduling entity 

known to kernel

- Multithreaded task is treated the 

same as a single-threaded task



Kernel-level (aka native) threads
- Kernel is aware of all threads in each process


- TCBs stored in kernel space

- Thread creation and scheduling carried out by kernel


- Context switch between threads in the same process is cheaper (why?) 
than inter-process context switch, but still requires interrupt/trap



1:1 mapping of user→kernel threads

user space

kernel space

Process P0 Process P1



Kernel-level threads pros/cons
- Pros


- Reuses scheduler for threads

- Support for intra-process 

thread-level parallelism

- Can take advantage of 

multiple CPUs

- Cons

- Threads are “heavyweight” 

system entities

- Much more expensive to 

create and maintain



Compromise: hybrid model
- Kernel provides a limited number of scheduling entities to each process; 

user code is responsible for running a user thread in each entity

- Supports fast thread context switches and parallel execution

- Limits total thread burden on system

- At cost of increased complexity and user/kernel coupling



M:N mapping of user→kernel threads

thread library

user space

kernel space

Process P0

thread library

Process P1



Threading APIs
- Threading APIs support thread creation, management, and coordination


- May be language/library/runtime/OS-specific

- Many modern libraries support user-level threads


- Most popular Unix low-level threading API = POSIX threads, “pthreads”

- OpenMP is a more abstract threading API for exploiting parallelism



POSIX threads (pthreads)
- C language threading API — 100+ functions in 4 categories


- Thread management

- Mutexes

- Condition variables

- Synchronization


- API doesn’t specify a user- or kernel- level thread implementation

- Most modern Unix implementations support 1:1 or M:N threading

more on these later!



e.g., pthreads thread mgmt API
/* thread creation */ 
int pthread_create (pthread_t *tid, 
                    const pthread_attr_t *attr, 
                    void *(*thread_fn)(void *), 
                    void *arg ); 

/* wait for termination; thread "reaping" */ 
int pthread_join (pthread_t tid, 
                  void **result_ptr ); 

/* terminates calling thread */ 
int pthread_exit (void *value_ptr );



int counter = 0; 

void *inc(void *num) { 
    for (int i=0; i<10000; i++) { 
        counter += 1; 
    } 
    printf("Thread %ld counter = %d\n",  
           pthread_self(), counter); 
    pthread_exit(NULL); 
} 

int main() { 
    pthread_t tid; 
    for (int i=0; i<5; i++){ 
        pthread_create(&tid, NULL, inc, NULL); 
        printf("Created thread %ld\n", tid); 
    } 
    pthread_exit(NULL); // terminate main thread 
    return 0; // never get here! 
}

Created thread 139859278001920 
Thread 139859278001920 counter = 10000 
Created thread 139859269609216 
Thread 139859269609216 counter = 20000 
Created thread 139859261216512 
Thread 139859261216512 counter = 30000 
Created thread 139859252713216 
Created thread 139859244320512 
Thread 139859252713216 counter = 40000 
Thread 139859244320512 counter = 50000

Run 1:

Run 2:
(?!?)

Created thread 139949404641024 
Created thread 139949396248320 
Created thread 139949387855616 
Thread 139949396248320 counter = 20035 
Created thread 139949379462912 
Thread 139949404641024 counter = 10000 
Created thread 139949371070208 
Thread 139949387855616 counter = 20833 
Thread 139949379462912 counter = 28523 
Thread 139949371070208 counter = 34961


