
§Case studies: x86, xv6, Linux
Diagrams from:


- Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3: System Programming Guide 

- AMD64 Architecture Programmer’s Manual, Volume 2: System Programming

- xv6 Commentary 



x86 VM support
- x86 (aka IA-32) supports segmentation & paging in 32-bit protected mode

- x86-64 (aka IA-32e) introduces 64-bit (nominal) mode


- Segmentation is mostly deprecated in favor of paging

- Support for coexisting normal and “huge” pages 
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segment, the segment type, and the location of the first byte of the segment in the 
linear address space (called the base address of the segment). The offset part of the 
logical address is added to the base address for the segment to locate a byte within 
the segment. The base address plus the offset thus forms a linear address in the 
processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped directly 
into the physical address space of processor. The physical address space is defined as 
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space 
much larger than it is economically feasible to contain all at once in physical memory, 
some method of “virtualizing” the linear address space is needed. This virtualization 
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space 
is simulated with a small amount of physical memory (RAM and ROM) and some disk 

Figure 3-1.  Segmentation and Paging

Global Descriptor
Table (GDT)

Linear Address
Space

Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.

Segment
Selector

Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

Address

Page



32-bit segmentation

3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form 
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the 
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte 
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is 
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment 
Descriptor Types”, for more information about segment types. For expand-up segments, the offset 
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit 
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse 
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on 
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection 
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at 
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for 
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The 
processor puts together the three base address fields to form a single 32-bit value. Segment base 
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required, 
this alignment allows programs to maximize performance by aligning code and data on 16-byte 
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the 
segment and the direction of growth. The interpretation of this field depends on whether the 
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The 
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See 
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is 
used to specify code and data-segment types. 

Figure 3-8.  Segment Descriptor
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G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
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DPL — Descriptor privilege level
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BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)

Segment descriptor format
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If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear 
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address 
translation is used to translate the linear address into a physical address. 

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear 
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear 
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy 
32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment, 
but instead points to the segment descriptor that defines the segment. A segment selector contains the following 
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies 
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base 
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag 
selects the current LDT.

Figure 3-5.  Logical Address to Linear Address Translation

Figure 3-6.  Segment Selector
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Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to 
3, with 0 being the most privileged level. See Section 5.5, “Privilege Levels”, for a description of the 
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege 
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that 
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor 
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null 
selector. It does, however, generate an exception when a segment register holding a null selector is used to access 
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null 
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are 
usually assigned or modified by link editors or linking loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides registers for holding up to 6 
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference 
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS), 
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor 
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data 
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the 
segment registers. So, although a system can define thousands of segments, only 6 can be available for immediate 
use. Other segments can be made available by loading their segment selectors into these registers during program 
execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a 
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment 
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and 
access control information from the segment descriptor pointed to by the segment selector. The information cached 
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus 
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors 
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when 
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might 
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions 
explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER 
and SYSEXIT instructions, and the IRET, INT n, INTO, INT3, and INT1 instructions. These instructions change 

Figure 3-7.  Segment Registers
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The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form 
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the 
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte 
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is 
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment 
Descriptor Types”, for more information about segment types. For expand-up segments, the offset 
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit 
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse 
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on 
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection 
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at 
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for 
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The 
processor puts together the three base address fields to form a single 32-bit value. Segment base 
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required, 
this alignment allows programs to maximize performance by aligning code and data on 16-byte 
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the 
segment and the direction of growth. The interpretation of this field depends on whether the 
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The 
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See 
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is 
used to specify code and data-segment types. 

Figure 3-8.  Segment Descriptor
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G — Granularity
LIMIT — Segment Limit
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S — Descriptor type (0 = system; 1 = code or data)
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AVL — Available for use by system software
BASE — Segment base address
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Segment descriptor format struct segdesc { 
  uint lim_15_0 : 16;  // Low bits of segment limit 
  uint base_15_0 : 16; // Low bits of segment base address 
  uint base_23_16 : 8; // Middle bits of segment base address 
  uint type : 4;       // Segment type (see STS_ constants) 
  uint s : 1;          // 0 = system, 1 = application 
  uint dpl : 2;        // Descriptor Privilege Level 
  uint p : 1;          // Present 
  uint lim_19_16 : 4;  // High bits of segment limit 
  uint avl : 1;        // Unused (available for software use) 
  uint rsv1 : 1;       // Reserved 
  uint db : 1;         // 0 = 16-bit segment, 1 = 32-bit segment 
  uint g : 1;          // Granularity: limit scaled by 4K when set 
  uint base_31_24 : 8; // High bits of segment base address 
}; 

#define SEG(type, base, lim, dpl) (struct segdesc)    \ 
{ ((lim) >> 12) & 0xffff, (uint)(base) & 0xffff,      \ 
  ((uint)(base) >> 16) & 0xff, type, 1, dpl, 1,       \ 
  (uint)(lim) >> 28, 0, 0, 1, 1, (uint)(base) >> 24 } 



32-bit xv6 segment initialization
struct segdesc { 
  uint lim_15_0 : 16;  // Low bits of segment limit 
  uint base_15_0 : 16; // Low bits of segment base address 
  uint base_23_16 : 8; // Middle bits of segment base address 
  uint type : 4;       // Segment type (see STS_ constants) 
  uint s : 1;          // 0 = system, 1 = application 
  uint dpl : 2;        // Descriptor Privilege Level 
  uint p : 1;          // Present 
  uint lim_19_16 : 4;  // High bits of segment limit 
  uint avl : 1;        // Unused (available for software use) 
  uint rsv1 : 1;       // Reserved 
  uint db : 1;         // 0 = 16-bit segment, 1 = 32-bit segment 
  uint g : 1;          // Granularity: limit scaled by 4K when set 
  uint base_31_24 : 8; // High bits of segment base address 
}; 

#define SEG(type, base, lim, dpl) (struct segdesc)    \ 
{ ((lim) >> 12) & 0xffff, (uint)(base) & 0xffff,      \ 
  ((uint)(base) >> 16) & 0xff, type, 1, dpl, 1,       \ 
  (uint)(lim) >> 28, 0, 0, 1, 1, (uint)(base) >> 24 } 

void 
seginit(void) 
{ 
  struct cpu *c; 

  c = &cpus[cpuid()]; 
  c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0); 
  c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0); 
  c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER); 
  c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER); 
  lgdt(c->gdt, sizeof(c->gdt)); 
} 
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Access checks can be used to protect not only against referencing an address outside 
the limit of a segment, but also against performing disallowed operations in certain 
segments. For example, since code segments are designated as read-only segments, 
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. 
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on 
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit 
protected mode semantics.

Figure 3-4.  Multi-Segment Model
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FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the address space because the 
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits 
are set to include only the range of addresses for which physical memory actually 
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on 
any attempt to access nonexistent memory. This model provides a minimum level of 
hardware protection against some kinds of program bugs.

Figure 3-2.  Flat Model

Figure 3-3.  Protected Flat Model
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32-bit 4KB vs. 4MB pages 
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Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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static pte_t * 
walkpgdir(pde_t *pgdir, const void *va, int alloc) 
{ 
  pde_t *pde; 
  pte_t *pgtab; 

  pde = &pgdir[PDX(va)]; 
  if(*pde & PTE_P){ 
    pgtab = (pte_t*)P2V(PTE_ADDR(*pde)); 
  } else { 
    if(!alloc || (pgtab = (pte_t*)kalloc()) == 0) 
      return 0; 
    memset(pgtab, 0, PGSIZE); 
    *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U; 
  } 
  return &pgtab[PTX(va)]; 
}
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Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries 
with 32-bit paging. For the paging structure entries, it identifies separately the 
format of entries that map pages, those that reference other paging structures, and 
those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are 
highlighted because they determine how such an entry is used..
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Figure 4-4.  Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
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Table 4-5.  Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6.  Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

CR3 and paging structure entries 4KB PTE breakdown



xv6 paging structure initialization 
#define EXTMEM  0x100000            // Start of extended memory 
#define PHYSTOP 0xE000000           // Top physical memory 
#define DEVSPACE 0xFE000000         // Other devices are at high addresses 

#define KERNBASE 0x80000000         // First kernel virtual address 
#define KERNLINK (KERNBASE+EXTMEM)  // Address where kernel is linked 

#define PGSIZE          4096    // bytes mapped by a page 
#define PGROUNDUP(sz)  (((sz)+PGSIZE-1) & ~(PGSIZE-1)) 
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1)) 

#define V2P(a) (((uint) (a)) - KERNBASE) 
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE)) 

// This table defines the kernel's mappings, present in every process 
static struct kmap { 
  void *virt; 
  uint phys_start; 
  uint phys_end; 
  int perm; 
} kmap[] = { 
 { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space 
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata 
 { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory 
 { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices 
};

static int 
mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm) 
{ 
  char *a, *last; 
  pte_t *pte; 

  a = (char*)PGROUNDDOWN((uint)va); 
  last = (char*)PGROUNDDOWN(((uint)va) + size - 1); 
  for(;;){ 
    if((pte = walkpgdir(pgdir, a, 1)) == 0) 
      return -1; 
    if(*pte & PTE_P) 
      panic("remap"); 
    *pte = pa | perm | PTE_P; 
    if(a == last) 
      break; 
    a += PGSIZE; 
    pa += PGSIZE; 
  } 
  return 0; 
}



xv6 paging structure initialization 
// Set up kernel part of a page table. 
pde_t* 
setupkvm(void) 
{ 
  pde_t *pgdir; 
  struct kmap *k; 

  pgdir = (pde_t*)kalloc()); 

  memset(pgdir, 0, PGSIZE); 

  if (P2V(PHYSTOP) > (void*)DEVSPACE) 
    panic("PHYSTOP too high"); 

  for(k = kmap; k < &kmap[NELEM(kmap)]; k++) 
    mappages(pgdir, k->virt, k->phys_end - k->phys_start, 
             (uint)k->phys_start, k->perm); 
  return pgdir; 
}

#define EXTMEM  0x100000            // Start of extended memory 
#define PHYSTOP 0xE000000           // Top physical memory 
#define DEVSPACE 0xFE000000         // Other devices are at high addresses 

#define KERNBASE 0x80000000         // First kernel virtual address 
#define KERNLINK (KERNBASE+EXTMEM)  // Address where kernel is linked 

#define PGSIZE          4096    // bytes mapped by a page 
#define PGROUNDUP(sz)  (((sz)+PGSIZE-1) & ~(PGSIZE-1)) 
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1)) 

#define V2P(a) (((uint) (a)) - KERNBASE) 
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE)) 

// This table defines the kernel's mappings, present in every process 
static struct kmap { 
  void *virt; 
  uint phys_start; 
  uint phys_end; 
  int perm; 
} kmap[] = { 
 { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space 
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata 
 { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory 
 { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices 
};



xv6 paging structure initialization 
// Allocate page tables and physical memory to grow process 
int 
allocuvm(pde_t *pgdir, uint oldsz, uint newsz) 
{ 
  char *mem; 
  uint a; 

  if(newsz >= KERNBASE) 
    return 0; 

  if(newsz < oldsz) 
    return oldsz; 

  a = PGROUNDUP(oldsz); 
  for(; a < newsz; a += PGSIZE){ 
    mem = kalloc(); 
    memset(mem, 0, PGSIZE); 
    mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U); 
  } 
  return newsz; 
}

#define EXTMEM  0x100000            // Start of extended memory 
#define PHYSTOP 0xE000000           // Top physical memory 
#define DEVSPACE 0xFE000000         // Other devices are at high addresses 

#define KERNBASE 0x80000000         // First kernel virtual address 
#define KERNLINK (KERNBASE+EXTMEM)  // Address where kernel is linked 

#define PGSIZE          4096    // bytes mapped by a page 
#define PGROUNDUP(sz)  (((sz)+PGSIZE-1) & ~(PGSIZE-1)) 
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1)) 

#define V2P(a) (((uint) (a)) - KERNBASE) 
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE)) 

// This table defines the kernel's mappings, present in every process 
static struct kmap { 
  void *virt; 
  uint phys_start; 
  uint phys_end; 
  int perm; 
} kmap[] = { 
 { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space 
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata 
 { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory 
 { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices 
};



xv6 paging structure initialization 
#define EXTMEM  0x100000            // Start of extended memory 
#define PHYSTOP 0xE000000           // Top physical memory 
#define DEVSPACE 0xFE000000         // Other devices are at high addresses 

#define KERNBASE 0x80000000         // First kernel virtual address 
#define KERNLINK (KERNBASE+EXTMEM)  // Address where kernel is linked 

#define PGSIZE          4096    // bytes mapped by a page 
#define PGROUNDUP(sz)  (((sz)+PGSIZE-1) & ~(PGSIZE-1)) 
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1)) 

#define V2P(a) (((uint) (a)) - KERNBASE) 
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE)) 

// This table defines the kernel's mappings, present in every process 
static struct kmap { 
  void *virt; 
  uint phys_start; 
  uint phys_end; 
  int perm; 
} kmap[] = { 
 { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space 
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata 
 { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory 
 { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices 
};
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Figure 2-2. Layout of the virtual address space of a process and the layout of the physical address
space. Note that if a machine has more than 2 Gbyte of physical memory, xv6 can use only the memory
that fits between KERNBASE and 0xFE00000.

clares the constants for xv6’s memory layout, and macros to convert virtual to physical
addresses.

When a process asks xv6 for more memory, xv6 first finds free physical pages to
provide the storage, and then adds PTEs to the process’s page table that point to the
new physical pages. xv6 sets the PTE_U, PTE_W, and PTE_P flags in these PTEs. Most
processes do not use the entire user address space; xv6 leaves PTE_P clear in unused
PTEs. Different processes’ page tables translate user addresses to different pages of
physical memory, so that each process has private user memory.

Xv6 includes all mappings needed for the kernel to run in every process’s page ta-
ble; these mappings all appear above KERNBASE. It maps virtual addresses KERN-

BASE:KERNBASE+PHYSTOP to 0:PHYSTOP. One reason for this mapping is so that the
kernel can use its own instructions and data. Another reason is that the kernel some-
times needs to be able to write a given page of physical memory, for example when
creating page table pages; having every physical page appear at a predictable virtual
address makes this convenient. A defect of this arrangement is that xv6 cannot make
use of more than 2 GB of physical memory. Some devices that use memory-mapped
I/O appear at physical addresses starting at 0xFE000000, so xv6 page tables including

DRAFT as of August 29, 2017 31 https://pdos.csail.mit.edu/6.828/xv6
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• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, 4-level paging1 is used.2 4-level paging is detailed in 
Section 4.5. 4-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, CR4.SMAP, CR4.PKE, and 
IA32_EFER.NXE as described in Section 4.1.3. 4-level paging is available only on processors that support the 
Intel 64 architecture.

The three paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are 

translated to corresponding physical addresses on the same page.
• Support for execute-disable access rights. In some paging modes, software can be prevented from fetching 

instructions from pages that are otherwise readable.
• Support for PCIDs. With 4-level paging, software can enable a facility by which a logical processor caches 

information for multiple linear-address spaces. The processor may retain cached information when software 
switches between different linear-address spaces.

• Support for protection keys. With 4-level paging, software can enable a facility by which each linear address is 
associated with a protection key. Software can use a new control register to determine, for each protection 
keys, how software can access linear addresses associated with that protection key.

Table 4-1 illustrates the principal differences between the three paging modes.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

2. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus 
using 4-level paging). The processor always sets IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify 
IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1.  Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs and 
protection 
keys?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02

2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

32
Up to
403

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is 
supported; see Section 4.1.4 and Section 4.3.

4 KB
4 MB4

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

No

4-level 1 1 1 48
Up to
52

4 KB
2 MB
1 GB6

6. Not all processors that support 4-level paging support 1-GByte pages; see Section 4.1.4.

Yes5 Yes7

7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1. Protection keys are used only if certain conditions hold; see Section 4.6.2.

Beyond 32-bit address spaces

aka x86-64, per original AMD specification



x86-64 (aka IA-32e) modes
- Long mode: 48-bit virtual addresses (256TB virtual address spaces)


- 4-levels of paging structures

- All but two segment registers are forced to a flat model, and  

no segment limit checking is performed

- FS & GS segments can contain non-zero bases (useful for OS)


- Compatibility mode allows for 32-bit code to run unaltered

- Intel has started implementing 5-level paging to support 57-bit virtual 

addresses (as of Ice Lake)



Long mode paging
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Figure 5-1. Virtual to Physical Address Translation—Long Mode
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Long mode 4KB paging
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Figure 4-8.  Linear-Address Translation to a 4-KByte Page using IA-32e Paging
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Long mode 2MB paging
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Figure 4-9.  Linear-Address Translation to a 2-MByte Page using 4-Level Paging

Figure 4-10.  Linear-Address Translation to a 1-GByte Page using 4-Level Paging
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Long mode 1GB paging
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The following items describe the IA-32e paging process in more detail as well has 
how the page size is determined.

• A 4-KByte naturally aligned PML4 table is located at the physical address 
specified in bits 51:12 of CR3 (see Table 4-12). A PML4 table comprises 512 64-
bit entries (PML4Es). A PML4E is selected using the physical address defined as 
follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.

Because a PML4E is identified using bits 47:39 of the linear address, it controls 
access to a 512-GByte region of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the 
physical address specified in bits 51:12 of the PML4E (see Table 4-14). A page-
directory-pointer table comprises 512 64-bit entries (PDPTEs). A PDPTE is 
selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

Figure 4-10.  Linear-Address Translation to a 1-GByte Page using IA-32e Paging
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Access control and metadata
- User/Supervisor and Read/Write 

flags in paging structure entries 
can be used to guard access

- If U/S flag = 0 (supervisor), can 

only access page if CPL = 0

- Accessed and Dirty flags are also 

useful for kernel swapping policies

4-28 Vol. 3A
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.

4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3, Section 4.4.2, and Section 4.5 

(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted by 

a translation is determined by the access rights specified by the paging-structure entries controlling the transla-

tion;
1
 paging-mode modifiers in CR0, CR4, and the IA32_EFER MSR; EFLAGS.AC; and the mode of the access.
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Figure 4-11.  Formats of CR3 and Paging-Structure Entries with 4-Level Paging

1. With PAE paging, the PDPTEs do not determine access rights.



Linux VM features
- Page cache and Sharing

- Swap cache

- Copy-on-write optimization

- Page allocation: buddy system

- Kernel internal memory management: slab allocator



Page cache and Sharing
- When executing a program (or loading shared libraries, etc.), the source 

file is not immediately loaded, but rather linked into the process’s virtual 
address space

- Page faults cause data to be loaded, a page at a time

- All file data loaded this way have entries in the page cache, which the 

kernel consults before going to disk

- If multiple processes access the same files, the kernel can share 

cached pages between them (potentially at different virtual addresses)

- Dirty bit needed to ensure that page isn’t modified



Page cache and Sharing
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Swap cache
- Dirty pages are swapped out (to save their contents) when low on memory


- Unmodified pages can just be loaded from the page cache!

- Swap cache keeps track of pages that have been written to swap


- If a page was previously swapped out and wasn’t modified after being 
swapped back in, can simply discard it

- Helpful optimization for when system is heavily swapping (thrashing)



Copy-on-write (COW)
- “Clone” operation is quite common (e.g., used when fork-ing a process)


- But if carried out literally — duplicating entire memory image — is 
incredibly expensive (and likely unnecessary)


- At clone time, no data is actually copied; simply replicate paging 
structures and mark pages as read-only

- Page faults that occur on write accesses trigger copy operation



Page allocation
- Because pages are all the same size, theoretically we have no external 

fragmentation

- Can allocate first free page we find and map it into any virtual address 

space using paging structures

- But recall: large blocks of contiguous pages can be mapped as a single 

huge page (e.g., 4KB vs. 4MB)

- Can greatly improve TLB effectiveness!


- Especially desirable given many levels of paging structures

- Also needed for I/O device direct memory access (more on this later)



Buddy system allocator
- Linux uses a “buddy system” allocator to search for blocks of free pages

- Idea: maintain separate lists of free page blocks, with sizes = powers of 2


- E.g.,	list #0 = 1 page blocks,  
	 list #1 = 2 page blocks,  
	 list #2 = 4 page blocks,  
	 list #3 = 8 page blocks, etc.


- When allocating a block, keep splitting in half if possible

- When freeing a block, keep merging (doubling) if possible



Buddy system pros/cons
- Pros:


- Fast allocation — search is easy

- Able to find contiguous blocks


- Good for huge pages

- Can simplify page table 

updates

- Cons:

- Small vs. Large blocks creates 

external fragmentation


- 2n block sizes can result in 
significant internal fragmentation

- Compromise: speed vs. efficiency



Kernel internal allocation
- Kernel frequently needs to free/allocate internal data structures


- e.g., PCB entries, VM structures, file/inode structures

- Fixed size, similarly initialized


- Buddy allocator is not ideal — too much internal fragmentation!

- Linux uses a slab allocator to allocate & free internal data structures



Slab allocator
- Built on top of the page buddy allocator

- Idea: allocate large blocks using buddy allocator, and carve them up into 

multiple data structure entries

- Use the first one available, and leave partially initialized when freed

- Effectively build dedicated caches for different data types


- Mitigates internal fragmentation due to buddy allocator


