
§Case studies: x86, xv6, Linux
Diagrams from:

- Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3: System Programming Guide

- AMD64 Architecture Programmer’s Manual, Volume 2: System Programming

- xv6 Commentary

x86 VM support
- x86 (aka IA-32) supports segmentation & paging in 32-bit protected mode

- x86-64 (aka IA-32e) introduces 64-bit (nominal) mode

- Segmentation is mostly deprecated in favor of paging

- Support for coexisting normal and “huge” pages

32-bit segmentation + paging

3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

segment, the segment type, and the location of the first byte of the segment in the
linear address space (called the base address of the segment). The offset part of the
logical address is added to the base address for the segment to locate a byte within
the segment. The base address plus the offset thus forms a linear address in the
processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped directly
into the physical address space of processor. The physical address space is defined as
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space
much larger than it is economically feasible to contain all at once in physical memory,
some method of “virtualizing” the linear address space is needed. This virtualization
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space
is simulated with a small amount of physical memory (RAM and ROM) and some disk

Figure 3-1. Segmentation and Paging

Global Descriptor
Table (GDT)

Linear Address
Space

Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.

Segment
Selector

Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

Address

Page

32-bit segmentation

3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For expand-up segments, the offset
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is
used to specify code and data-segment types.

Figure 3-8. Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

TypeSL 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)

Segment descriptor format

Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address
translation is used to translate the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy
32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment,
but instead points to the segment descriptor that defines the segment. A segment selector contains the following
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag
selects the current LDT.

Figure 3-5. Logical Address to Linear Address Translation

Figure 3-6. Segment Selector

Offset (Effective Address)
0

Base Address

Descriptor Table

 Segment
Descriptor

31(63)
Seg. Selector

015
Logical

Address

+

Linear Address
031(63)

15 3 2 1 0
T
IIndex

Table Indicator
 0 = GDT
 1 = LDT
Requested Privilege Level (RPL)

RPL

3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to
3, with 0 being the most privileged level. See Section 5.5, “Privilege Levels”, for a description of the
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null
selector. It does, however, generate an exception when a segment register holding a null selector is used to access
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are
usually assigned or modified by link editors or linking loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides registers for holding up to 6
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS),
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the
segment registers. So, although a system can define thousands of segments, only 6 can be available for immediate
use. Other segments can be made available by loading their segment selectors into these registers during program
execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and
access control information from the segment descriptor pointed to by the segment selector. The information cached
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions
explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER
and SYSEXIT instructions, and the IRET, INT n, INTO, INT3, and INT1 instructions. These instructions change

Figure 3-7. Segment Registers

CS
SS
DS
ES
FS
GS

Segment Selector Base Address, Limit, Access Information
Visible Part Hidden Part

Segmentation registers

32-bit xv6 segment initialization

3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For expand-up segments, the offset
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is
used to specify code and data-segment types.

Figure 3-8. Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

TypeSL 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)

Segment descriptor format struct segdesc {
 uint lim_15_0 : 16; // Low bits of segment limit
 uint base_15_0 : 16; // Low bits of segment base address
 uint base_23_16 : 8; // Middle bits of segment base address
 uint type : 4; // Segment type (see STS_ constants)
 uint s : 1; // 0 = system, 1 = application
 uint dpl : 2; // Descriptor Privilege Level
 uint p : 1; // Present
 uint lim_19_16 : 4; // High bits of segment limit
 uint avl : 1; // Unused (available for software use)
 uint rsv1 : 1; // Reserved
 uint db : 1; // 0 = 16-bit segment, 1 = 32-bit segment
 uint g : 1; // Granularity: limit scaled by 4K when set
 uint base_31_24 : 8; // High bits of segment base address
};

#define SEG(type, base, lim, dpl) (struct segdesc) \
{ ((lim) >> 12) & 0xffff, (uint)(base) & 0xffff, \
 ((uint)(base) >> 16) & 0xff, type, 1, dpl, 1, \
 (uint)(lim) >> 28, 0, 0, 1, 1, (uint)(base) >> 24 }

32-bit xv6 segment initialization
struct segdesc {
 uint lim_15_0 : 16; // Low bits of segment limit
 uint base_15_0 : 16; // Low bits of segment base address
 uint base_23_16 : 8; // Middle bits of segment base address
 uint type : 4; // Segment type (see STS_ constants)
 uint s : 1; // 0 = system, 1 = application
 uint dpl : 2; // Descriptor Privilege Level
 uint p : 1; // Present
 uint lim_19_16 : 4; // High bits of segment limit
 uint avl : 1; // Unused (available for software use)
 uint rsv1 : 1; // Reserved
 uint db : 1; // 0 = 16-bit segment, 1 = 32-bit segment
 uint g : 1; // Granularity: limit scaled by 4K when set
 uint base_31_24 : 8; // High bits of segment base address
};

#define SEG(type, base, lim, dpl) (struct segdesc) \
{ ((lim) >> 12) & 0xffff, (uint)(base) & 0xffff, \
 ((uint)(base) >> 16) & 0xff, type, 1, dpl, 1, \
 (uint)(lim) >> 28, 0, 0, 1, 1, (uint)(base) >> 24 }

void
seginit(void)
{
 struct cpu *c;

 c = &cpus[cpuid()];
 c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
 c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
 c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
 c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
 lgdt(c->gdt, sizeof(c->gdt));
}

Flat vs. Multi-segment models

3-6 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Access checks can be used to protect not only against referencing an address outside
the limit of a segment, but also against performing disallowed operations in certain
segments. For example, since code segments are designated as read-only segments,
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels.
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit
protected mode semantics.

Figure 3-4. Multi-Segment Model

Linear Address Space
(or Physical Memory)

Segment
Registers

CS

Segment
Descriptors

LimitAccess
Base Address

SS LimitAccess
Base Address

DS LimitAccess
Base Address

ES LimitAccess
Base Address

FS LimitAccess
Base Address

GS LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

Stack

Code

Data

Data

Data

Data

3-4 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the address space because the
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits
are set to include only the range of addresses for which physical memory actually
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on
any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Figure 3-2. Flat Model

Figure 3-3. Protected Flat Model

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFHSegment

LimitAccess
Base Address

Registers
CS

SS

DS

ES

FS

GS

Code

0

Code- and Data-Segment
Descriptors

Stack

Not Present

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFH
Segment

LimitAccess
Base Address

Registers

CS

ES

SS

DS

FS

GS

Code

0

Segment
Descriptors

LimitAccess
Base Address

Memory I/O

Stack

Not Present

32-bit 4KB vs. 4MB pages

4-12 Vol. 3A

PAGING

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

4-12 Vol. 3A

PAGING

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

32-bit 4KB xv6 page table walk/alloc

4-12 Vol. 3A

PAGING

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

static pte_t *
walkpgdir(pde_t *pgdir, const void *va, int alloc)
{
 pde_t *pde;
 pte_t *pgtab;

 pde = &pgdir[PDX(va)];
 if(*pde & PTE_P){
 pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
 } else {
 if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
 return 0;
 memset(pgtab, 0, PGSIZE);
 *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
 }
 return &pgtab[PTX(va)];
}

32-bit PDE/PTE

Vol. 3A 4-13

PAGING

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries
with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and
those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are
highlighted because they determine how such an entry is used..

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with

32-bit paging.

Ignored
P
C
D

P
W
T

Ignored CR3

Bits 31:22 of address
of 2MB page frame

Reserved
(must be 0)

Bits 39:32
of

address2

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller,
the number of bits reserved in positions 20:13 of a PDE mapping a 4-MByte will change.

P
A
T

Ignored G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
4MB
page

Address of page table Ignored 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

Address of 4KB page frame Ignored G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

4-12 Vol. 3A

PAGING

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

CR3 and paging structure entries 4KB PTE breakdown

xv6 paging structure initialization
#define EXTMEM 0x100000 // Start of extended memory
#define PHYSTOP 0xE000000 // Top physical memory
#define DEVSPACE 0xFE000000 // Other devices are at high addresses

#define KERNBASE 0x80000000 // First kernel virtual address
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked

#define PGSIZE 4096 // bytes mapped by a page
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))

#define V2P(a) (((uint) (a)) - KERNBASE)
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE))

// This table defines the kernel's mappings, present in every process
static struct kmap {
 void *virt;
 uint phys_start;
 uint phys_end;
 int perm;
} kmap[] = {
 { (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
 { (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory
 { (void*)DEVSPACE, DEVSPACE, 0, PTE_W}, // more devices
};

static int
mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
{
 char *a, *last;
 pte_t *pte;

 a = (char*)PGROUNDDOWN((uint)va);
 last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
 for(;;){
 if((pte = walkpgdir(pgdir, a, 1)) == 0)
 return -1;
 if(*pte & PTE_P)
 panic("remap");
 *pte = pa | perm | PTE_P;
 if(a == last)
 break;
 a += PGSIZE;
 pa += PGSIZE;
 }
 return 0;
}

xv6 paging structure initialization
// Set up kernel part of a page table.
pde_t*
setupkvm(void)
{
 pde_t *pgdir;
 struct kmap *k;

 pgdir = (pde_t*)kalloc());

 memset(pgdir, 0, PGSIZE);

 if (P2V(PHYSTOP) > (void*)DEVSPACE)
 panic("PHYSTOP too high");

 for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
 mappages(pgdir, k->virt, k->phys_end - k->phys_start,
 (uint)k->phys_start, k->perm);
 return pgdir;
}

#define EXTMEM 0x100000 // Start of extended memory
#define PHYSTOP 0xE000000 // Top physical memory
#define DEVSPACE 0xFE000000 // Other devices are at high addresses

#define KERNBASE 0x80000000 // First kernel virtual address
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked

#define PGSIZE 4096 // bytes mapped by a page
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))

#define V2P(a) (((uint) (a)) - KERNBASE)
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE))

// This table defines the kernel's mappings, present in every process
static struct kmap {
 void *virt;
 uint phys_start;
 uint phys_end;
 int perm;
} kmap[] = {
 { (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
 { (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory
 { (void*)DEVSPACE, DEVSPACE, 0, PTE_W}, // more devices
};

xv6 paging structure initialization
// Allocate page tables and physical memory to grow process
int
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
 char *mem;
 uint a;

 if(newsz >= KERNBASE)
 return 0;

 if(newsz < oldsz)
 return oldsz;

 a = PGROUNDUP(oldsz);
 for(; a < newsz; a += PGSIZE){
 mem = kalloc();
 memset(mem, 0, PGSIZE);
 mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U);
 }
 return newsz;
}

#define EXTMEM 0x100000 // Start of extended memory
#define PHYSTOP 0xE000000 // Top physical memory
#define DEVSPACE 0xFE000000 // Other devices are at high addresses

#define KERNBASE 0x80000000 // First kernel virtual address
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked

#define PGSIZE 4096 // bytes mapped by a page
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))

#define V2P(a) (((uint) (a)) - KERNBASE)
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE))

// This table defines the kernel's mappings, present in every process
static struct kmap {
 void *virt;
 uint phys_start;
 uint phys_end;
 int perm;
} kmap[] = {
 { (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
 { (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory
 { (void*)DEVSPACE, DEVSPACE, 0, PTE_W}, // more devices
};

xv6 paging structure initialization
#define EXTMEM 0x100000 // Start of extended memory
#define PHYSTOP 0xE000000 // Top physical memory
#define DEVSPACE 0xFE000000 // Other devices are at high addresses

#define KERNBASE 0x80000000 // First kernel virtual address
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked

#define PGSIZE 4096 // bytes mapped by a page
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))

#define V2P(a) (((uint) (a)) - KERNBASE)
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE))

// This table defines the kernel's mappings, present in every process
static struct kmap {
 void *virt;
 uint phys_start;
 uint phys_end;
 int perm;
} kmap[] = {
 { (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
 { (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory
 { (void*)DEVSPACE, DEVSPACE, 0, PTE_W}, // more devices
};

0

User data

User text

User stack

Program data & heap

+ 0x100000

Kernel text

end

KERNBASE

Kernel data

4 Gig

0

RW--

RW-

RWU

Device memory

0xFE000000

Free memory

RW-

R--

Virtual

0x100000

PHYSTOP

Unused if less than 2 Gig
 of physical memory

Extended memory

640K
I/O space

Base memory

Physical
4 Gig

RWU

RWU

PAGESIZE

RW-

At most 2 Gig

Unused if less than 2 Gig
 of physical memory

Figure 2-2. Layout of the virtual address space of a process and the layout of the physical address
space. Note that if a machine has more than 2 Gbyte of physical memory, xv6 can use only the memory
that fits between KERNBASE and 0xFE00000.

clares the constants for xv6’s memory layout, and macros to convert virtual to physical
addresses.

When a process asks xv6 for more memory, xv6 first finds free physical pages to
provide the storage, and then adds PTEs to the process’s page table that point to the
new physical pages. xv6 sets the PTE_U, PTE_W, and PTE_P flags in these PTEs. Most
processes do not use the entire user address space; xv6 leaves PTE_P clear in unused
PTEs. Different processes’ page tables translate user addresses to different pages of
physical memory, so that each process has private user memory.

Xv6 includes all mappings needed for the kernel to run in every process’s page ta-
ble; these mappings all appear above KERNBASE. It maps virtual addresses KERN-

BASE:KERNBASE+PHYSTOP to 0:PHYSTOP. One reason for this mapping is so that the
kernel can use its own instructions and data. Another reason is that the kernel some-
times needs to be able to write a given page of physical memory, for example when
creating page table pages; having every physical page appear at a predictable virtual
address makes this convenient. A defect of this arrangement is that xv6 cannot make
use of more than 2 GB of physical memory. Some devices that use memory-mapped
I/O appear at physical addresses starting at 0xFE000000, so xv6 page tables including

DRAFT as of August 29, 2017 31 https://pdos.csail.mit.edu/6.828/xv6

4-2 Vol. 3A

PAGING

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, 4-level paging1 is used.2 4-level paging is detailed in
Section 4.5. 4-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, CR4.SMAP, CR4.PKE, and
IA32_EFER.NXE as described in Section 4.1.3. 4-level paging is available only on processors that support the
Intel 64 architecture.

The three paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are

translated to corresponding physical addresses on the same page.
• Support for execute-disable access rights. In some paging modes, software can be prevented from fetching

instructions from pages that are otherwise readable.
• Support for PCIDs. With 4-level paging, software can enable a facility by which a logical processor caches

information for multiple linear-address spaces. The processor may retain cached information when software
switches between different linear-address spaces.

• Support for protection keys. With 4-level paging, software can enable a facility by which each linear address is
associated with a protection key. Software can use a new control register to determine, for each protection
keys, how software can access linear addresses associated with that protection key.

Table 4-1 illustrates the principal differences between the three paging modes.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

2. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus
using 4-level paging). The processor always sets IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify
IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1. Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs and
protection
keys?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02

2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

32
Up to
403

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is
supported; see Section 4.1.4 and Section 4.3.

4 KB
4 MB4

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

No

4-level 1 1 1 48
Up to
52

4 KB
2 MB
1 GB6

6. Not all processors that support 4-level paging support 1-GByte pages; see Section 4.1.4.

Yes5 Yes7

7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1. Protection keys are used only if certain conditions hold; see Section 4.6.2.

Beyond 32-bit address spaces

aka x86-64, per original AMD specification

x86-64 (aka IA-32e) modes
- Long mode: 48-bit virtual addresses (256TB virtual address spaces)

- 4-levels of paging structures

- All but two segment registers are forced to a flat model, and  

no segment limit checking is performed

- FS & GS segments can contain non-zero bases (useful for OS)

- Compatibility mode allows for 32-bit code to run unaltered

- Intel has started implementing 5-level paging to support 57-bit virtual

addresses (as of Ice Lake)

Long mode paging

130 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 5-1. Virtual to Physical Address Translation—Long Mode

513-200.eps

PML4E PDE

Physical
Address

PDPE

PTE

Physical Page
Offset

Sign
Extension

63 0

Page Directory
Offset

Page Map
Level-4 Offset

Page Directory
Pointer Offset

Page Table
Offset

Page Map Base Register CR3

64-Bit Virtual Address

Page Directory Pointer
Table

Page Directory
Table

Physical Page
Frame

Page
Table

Page Map
Level 4
Table

- 48-bit virtual addresses with 4
levels of paging

- Depending on paging structure

entries, supports 4KB, 2MB, 1GB
page sizes

Long mode 4KB paging

4-28 Vol. 3A

PAGING

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Directory Ptr

PTE

Linear Address

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE with PS=0

Table
011122021

Directory
30 29

Page-Directory-

Page-Directory

PML4
47

9

PML4E

40

40

40

Long mode 2MB paging

Vol. 3A 4-21

PAGING

Figure 4-9. Linear-Address Translation to a 2-MByte Page using 4-Level Paging

Figure 4-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging

Directory Ptr

Linear Address

PDPTE

CR3

39 38

Pointer Table

9
9

40

21

31

2-MByte Page

Offset

Physical Addr

PDE with PS=1

02021
Directory

30 29

Page-Directory-

Page-Directory

PML4
47

9

PML4E

40

40

Directory Ptr

Linear Address

PDPTE with PS=1

CR3

39 38

Pointer Table

9

40

30

22

1-GByte Page

Offset

Physical Addr

030 29

Page-Directory-

PML4
47

9

PML4E
40

Long mode 1GB paging

4-30 Vol. 3A

PAGING

The following items describe the IA-32e paging process in more detail as well has
how the page size is determined.

• A 4-KByte naturally aligned PML4 table is located at the physical address
specified in bits 51:12 of CR3 (see Table 4-12). A PML4 table comprises 512 64-
bit entries (PML4Es). A PML4E is selected using the physical address defined as
follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.

Because a PML4E is identified using bits 47:39 of the linear address, it controls
access to a 512-GByte region of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the
physical address specified in bits 51:12 of the PML4E (see Table 4-14). A page-
directory-pointer table comprises 512 64-bit entries (PDPTEs). A PDPTE is
selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

Figure 4-10. Linear-Address Translation to a 1-GByte Page using IA-32e Paging

Directory Ptr

Linear Address

PDPTE with PS=1

CR3

39 38

Pointer Table

9

40

30

22

1-GByte Page

Offset

Physical Addr

030 29

Page-Directory-

PML4
47

9

PML4E

40

Access control and metadata
- User/Supervisor and Read/Write

flags in paging structure entries
can be used to guard access

- If U/S flag = 0 (supervisor), can

only access page if CPL = 0

- Accessed and Dirty flags are also

useful for kernel swapping policies

4-28 Vol. 3A

PAGING

.

4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3, Section 4.4.2, and Section 4.5

(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted by

a translation is determined by the access rights specified by the paging-structure entries controlling the transla-

tion;
1
 paging-mode modifiers in CR0, CR4, and the IA32_EFER MSR; EFLAGS.AC; and the mode of the access.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1

NOTES:
1. M is an abbreviation for MAXPHYADDR.

M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved2

2. Reserved fields must be 0.

Address of PML4 table Ignored
P
C
D

P
W
T

Ign. CR3

X
D
3

3. If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

Ignored Rsvd. Address of page-directory-pointer table Ign. Rs
vd

I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1 PML4E:
present

Ignored 0
PML4E:

not
present

X
D

Prot.
Key4

4. If CR4.PKE = 0, the protection key is ignored.

Ignored Rsvd. Address of
1GB page frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:

1GB
page

X
D

Ignored Rsvd. Address of page directory Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:
page

directory

Ignored 0
PDTPE:

not
present

X
D

Prot.
Key4 Ignored Rsvd. Address of

2MB page frame Reserved
P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
2MB
page

X
D

Ignored Rsvd. Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

X
D

Prot.
Key4 Ignored Rsvd. Address of 4KB page frame Ign. G

P
A
T

D A
P
C
D

P
W
T

U
/S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-11. Formats of CR3 and Paging-Structure Entries with 4-Level Paging

1. With PAE paging, the PDPTEs do not determine access rights.

Linux VM features
- Page cache and Sharing

- Swap cache

- Copy-on-write optimization

- Page allocation: buddy system

- Kernel internal memory management: slab allocator

Page cache and Sharing
- When executing a program (or loading shared libraries, etc.), the source

file is not immediately loaded, but rather linked into the process’s virtual
address space

- Page faults cause data to be loaded, a page at a time

- All file data loaded this way have entries in the page cache, which the

kernel consults before going to disk

- If multiple processes access the same files, the kernel can share

cached pages between them (potentially at different virtual addresses)

- Dirty bit needed to ensure that page isn’t modified

Page cache and Sharing

/bin/ls (1)
/bin/ls (2)

…
libc.so (1)
libc.so (2)

…
/usr/bin/vim (1)
/usr/bin/vim (2)

…

Page cache

4KB

P0 VM P1 VM

Swap cache
- Dirty pages are swapped out (to save their contents) when low on memory

- Unmodified pages can just be loaded from the page cache!

- Swap cache keeps track of pages that have been written to swap

- If a page was previously swapped out and wasn’t modified after being
swapped back in, can simply discard it

- Helpful optimization for when system is heavily swapping (thrashing)

Copy-on-write (COW)
- “Clone” operation is quite common (e.g., used when fork-ing a process)

- But if carried out literally — duplicating entire memory image — is
incredibly expensive (and likely unnecessary)

- At clone time, no data is actually copied; simply replicate paging
structures and mark pages as read-only

- Page faults that occur on write accesses trigger copy operation

Page allocation
- Because pages are all the same size, theoretically we have no external

fragmentation

- Can allocate first free page we find and map it into any virtual address

space using paging structures

- But recall: large blocks of contiguous pages can be mapped as a single

huge page (e.g., 4KB vs. 4MB)

- Can greatly improve TLB effectiveness!

- Especially desirable given many levels of paging structures

- Also needed for I/O device direct memory access (more on this later)

Buddy system allocator
- Linux uses a “buddy system” allocator to search for blocks of free pages

- Idea: maintain separate lists of free page blocks, with sizes = powers of 2

- E.g.,	list #0 = 1 page blocks,  
	 list #1 = 2 page blocks,  
	 list #2 = 4 page blocks,  
	 list #3 = 8 page blocks, etc.

- When allocating a block, keep splitting in half if possible

- When freeing a block, keep merging (doubling) if possible

Buddy system pros/cons
- Pros:

- Fast allocation — search is easy

- Able to find contiguous blocks

- Good for huge pages

- Can simplify page table

updates

- Cons:

- Small vs. Large blocks creates

external fragmentation

- 2n block sizes can result in
significant internal fragmentation

- Compromise: speed vs. efficiency

Kernel internal allocation
- Kernel frequently needs to free/allocate internal data structures

- e.g., PCB entries, VM structures, file/inode structures

- Fixed size, similarly initialized

- Buddy allocator is not ideal — too much internal fragmentation!

- Linux uses a slab allocator to allocate & free internal data structures

Slab allocator
- Built on top of the page buddy allocator

- Idea: allocate large blocks using buddy allocator, and carve them up into

multiple data structure entries

- Use the first one available, and leave partially initialized when freed

- Effectively build dedicated caches for different data types

- Mitigates internal fragmentation due to buddy allocator

