
§Segmentation

Segmentation
- Partition virtual address space into multiple disjoint segments

- Individually map onto physical memory with separate base/limit registers

- Address space info stored in PCB and restored on context switch

- Requires that memory requests are for segmented addresses

- Consist of segment selector and offset into segment

- Alternatively: segment can be implied by instruction (e.g., PC always

refers to code segment)

E.g., logical segments

MMU

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment regs

Physical

B3

B3+L3

B2

B2+L2

B1

B1+L1

B0

B0+L0

Seg #0: Code
0

0

0

0
Seg #1: Data

Seg #3: Stack

Seg #2: Heap

Segmented
Virtual

MMU

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment regs

VA: seg#:offset

data

assert (offset ≤ L2)

⊕
CPU

PA: offset + B2

Physical

B3

B3+L3

B2

B2+L2

B1

B1+L1

B0

B0+L0

E.g., translation

- Mapping individual segments avoids reserving memory for unused space
between segments in the linear address space

unused

PhysicalVirtual

0

stack

code

stack

code

simple relocation segmentation

Physical

0

stack

code

0 stack

code

Virtual

Improved utilization

Segment sharing and metadata
- Segments may be shared between processes to reduce memory usage

(and improve caching behavior)

- Segments may have additional metadata to control and limit access

- Read-only / Non-executable segments

- Privilege-level based access control (kernel vs. user)

- Direction of growth (e.g., downward from max offset for stacks)

E.g., shared code and metadata

RW

RWE

RX

RW

Seg #0: Code
0

M

0

0
Seg #1: Data

Seg #3: Stack

Seg #2: Heap

P0 Virtual

RW

RWE

RX

RW

(shared code)

Seg #0: Code
0

M

0

0
Seg #1: Data

Seg #3: Stack

Seg #2: Heap

P1 Virtual

R=readable, W=writable, X=executable, E=expand downwards

Physical

Segmentation fault
- A segmentation fault can be generated by the MMU when:

- Limit check fails (access beyond ends of segment)

- Access control assertion fails (e.g., illegal operation)

- Privilege assertion fails (e.g., insufficient privilege)

- Fault transfers control to kernel (to alert/terminate offending process)

Downside: external fragmentation

0

0

stack

code

P1 Virtual

x
x
x

Physical

0

stack

code

0 stack

code

P0 Virtual

- Variable segment sizes make placement and free space search non-trivial

- Memory may be defragmented via compaction, but this is expensive!

- Also, large segments still loaded monolithically (coarse-grained mapping)

Analysis
- Fast translation via base register + offset

- Protection enforced via limits

- Improved memory utilization over monolithic mapping

- Access control and sharing via additional segment metadata

- But variable, monolithic segments create external fragmentation,

making free space search and/or compaction necessary

§Paging

Addressing segmentation issues
- Variable segment sizes cause external fragmentation

- Instead, partition address space and main memory into fixed-size pages

- Large, monolithic segments may reduce utilization, as only a fraction of a

segment may be needed at a given time

- Instead, reduce the granularity of mapping with smaller pages

stack

heap

data

code

physical

Paging
- Partition virtual address spaces and memory into uniformly sized pages

- Granularity of mapping = page

- Segments may span (and are not  

necessarily aligned to) pages

- Not all of a segment needs to be  

mapped

Modified mapping problem
- A virtual address is broken down into a virtual page number and offset

- Mapping problem: virtual page number (VPN) → physical page number (PPN)

(latter aka physical frame number (PFN))

- e.g., given page size = 2p bytes
 p

VA: offsetVPN

 p

PA: offsetPPN

Modified mapping problem
- Issue: how to store mappings?

- I.e., what data structure to use for representing virtual address spaces?

VA: offsetVPN

PA: offsetPPN

page mapping
structure

Page table
- Typical implementation:

- Table with a separate entry per virtual page, each indicating:

- If mapping exists (valid flag)

- Access metadata, e.g., rwx and kernel/user flags

- The corresponding physical page number

index
1

Page table VA: offsetVPN

n

 offsetPPNPA:

valid PPN

2n entries

- VPN from virtual address
acts as an index into the
page table

- PPN (if valid and mapped)

is concatenated with offset
from VA to form PA

E.g., page table size
- Given:

- 32-bit virtual addresses

- 4KB (212) sized pages

- 4-byte page table entries

- How large is the page table?

- Number of pages = 232 ÷ 212 = 220 = 1M

- Page table size = 1M x 4 bytes = 4MB

- Recall: each process needs its own page table!

Page table walk
- The page table is too large to fit into the MMU, so resides in memory

- Translating a VPN → PPN requires indexing into the page table (known

as a page table walk)

- Performed by MMU

- Page table is managed by the kernel for each process

- Current process page table is selected by kernel on each context
switch (e.g., by pointing a page table base register at it)

PA

Page table translations are slow!
- Most modern caching systems are physically addressed, so we  

cannot avoid translation before cache lookup

- I.e., each VA access requires up to  

two memory accesses!

VA miss

Physical

Page
Table

CPU CacheAddress
Translator

hit
data

update

page table walk

minimum of 1 memory access

valid tag PPN

TLB hit?

Translation Lookaside Buffer (TLB)
- Solution: dedicated cache for VPN → PPN translations

- Page table walk only performed on TLB miss

VPN offsetVA:

=

AND PPN offsetPA:

ideal path (no memory accesses)

TLB / Cache / PT interaction
MMU

Physical

Page
Table

CPU Cache
VA PA miss

TLB
(VPN→PPN

cache)

Address
Translator

only if
TLB miss!

page table walk

hit
data

update

TLB issues
- TLB mappings are process specific — requires flush on context switch

- Some architectures store address space identifier per cache line

- TLB only caches a few thousand mappings, at most

- vs. orders of magnitude more per process, potentially!

- Effectiveness of TLB can be “tuned” by adjusting number of pages

(larger page size = smaller number of pages)

- Downside to large pages?

Internal fragmentation
- Large pages result in coarser mapping granularity

- I.e., larger “chunks” carved out of physical memory at a time

- May lower utilization, if large portions of pages are not used — known

as internal fragmentation

- Must balance TLB effectiveness against memory utilization

E.g., large(-ish) pages
P0 Virtual P1 Virtual

Physical

internal fragmentation

E.g., small(-ish) pages
P0 Virtual P1 Virtual

Physical

