
§Segmentation



Segmentation
- Partition virtual address space into multiple disjoint segments


- Individually map onto physical memory with separate base/limit registers

- Address space info stored in PCB and restored on context switch


- Requires that memory requests are for segmented addresses 

- Consist of segment selector and offset into segment

- Alternatively: segment can be implied by instruction (e.g., PC always 

refers to code segment)



E.g., logical segments 
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E.g., translation



- Mapping individual segments avoids reserving memory for unused space 
between segments in the linear address space
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Segment sharing and metadata
- Segments may be shared between processes to reduce memory usage 

(and improve caching behavior)

- Segments may have additional metadata to control and limit access


- Read-only / Non-executable segments

- Privilege-level based access control (kernel vs. user)

- Direction of growth (e.g., downward from max offset for stacks)



E.g., shared code and metadata
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Segmentation fault
- A segmentation fault can be generated by the MMU when:


- Limit check fails (access beyond ends of segment)

- Access control assertion fails (e.g., illegal operation)

- Privilege assertion fails (e.g., insufficient privilege)


- Fault transfers control to kernel (to alert/terminate offending process)



Downside: external fragmentation
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- Variable segment sizes make placement and free space search non-trivial

- Memory may be defragmented via compaction, but this is expensive!


- Also, large segments still loaded monolithically (coarse-grained mapping)



Analysis
- Fast translation via base register + offset

- Protection enforced via limits

- Improved memory utilization over monolithic mapping

- Access control and sharing via additional segment metadata

- But variable, monolithic segments create external fragmentation, 

making free space search and/or compaction necessary



§Paging



Addressing segmentation issues
- Variable segment sizes cause external fragmentation


- Instead, partition address space and main memory into fixed-size pages

- Large, monolithic segments may reduce utilization, as only a fraction of a 

segment may be needed at a given time

- Instead, reduce the granularity of mapping with smaller pages
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Paging
- Partition virtual address spaces and memory into uniformly sized pages


- Granularity of mapping = page

- Segments may span (and are not  

necessarily aligned to) pages

- Not all of a segment needs to be  

mapped



Modified mapping problem
- A virtual address is broken down into a virtual page number and offset

- Mapping problem: virtual page number (VPN) → physical page number (PPN) 

(latter aka physical frame number (PFN))


- e.g., given page size = 2p bytes
 p

VA:  offsetVPN

 p

PA:  offsetPPN



Modified mapping problem
- Issue: how to store mappings?


- I.e., what data structure to use for representing virtual address spaces?

VA:  offsetVPN

PA:  offsetPPN

page mapping 
structure



Page table
- Typical implementation:


- Table with a separate entry per virtual page, each indicating:

- If mapping exists (valid flag)

- Access metadata, e.g., rwx and kernel/user flags

- The corresponding physical page number
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E.g., page table size
- Given:


- 32-bit virtual addresses

- 4KB (212) sized pages

- 4-byte page table entries


- How large is the page table?

- Number of pages = 232 ÷ 212 = 220 = 1M

- Page table size = 1M x 4 bytes = 4MB

- Recall: each process needs its own page table!



Page table walk
- The page table is too large to fit into the MMU, so resides in memory

- Translating a VPN → PPN requires indexing into the page table (known 

as a page table walk)

- Performed by MMU

- Page table is managed by the kernel for each process


- Current process page table is selected by kernel on each context 
switch (e.g., by pointing a page table base register at it)



PA

Page table translations are slow!
- Most modern caching systems are physically addressed, so we  

cannot avoid translation before cache lookup

- I.e., each VA access requires up to  

two memory accesses!
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valid tag PPN

TLB hit?

Translation Lookaside Buffer (TLB)
- Solution: dedicated cache for VPN → PPN translations


- Page table walk only performed on TLB miss

VPN offsetVA:
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TLB issues
- TLB mappings are process specific — requires flush on context switch


- Some architectures store address space identifier per cache line

- TLB only caches a few thousand mappings, at most


- vs. orders of magnitude more per process, potentially!

- Effectiveness of TLB can be “tuned” by adjusting number of pages 

(larger page size = smaller number of pages)

- Downside to large pages?



Internal fragmentation
- Large pages result in coarser mapping granularity


- I.e., larger “chunks” carved out of physical memory at a time

- May lower utilization, if large portions of pages are not used — known 

as internal fragmentation

- Must balance TLB effectiveness against memory utilization
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