
Virtual Memory
CS 450: Operating Systems
Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

Agenda
- Address spaces

- Segmentation

- Paging

- Swapping

- User space memory management

- Case study: Linux+x86 VM

§ Address spaces

Programs → Processes
- Compilers transform programs into binary images that contains

executable machine code and static data (e.g., constants/globals)

- The kernel can turn these binaries into active, running processes

- Via limited direct execution and the scheduler/dispatcher, multiple
processes can run concurrently on timeshared CPUs

- But how do processes share memory?

- How are memory addresses encoded into programs?

000000000040052d <main>:
 40052d: 55 push %rbp
 40052e: 48 89 e5 mov %rsp,%rbp
 400531: b8 2d 05 40 00 mov $0x40052d,%eax
 400536: 48 89 c6 mov %rax,%rsi
 400539: bf 04 06 40 00 mov $0x400604,%edi
 40053e: b8 00 00 00 00 mov $0x0,%eax
 400543: e8 c8 fe ff ff callq 400410
 400548: b8 40 10 60 00 mov $0x601040,%eax
 40054d: 48 89 c6 mov %rax,%rsi
 400550: bf 04 06 40 00 mov $0x400604,%edi
 400555: b8 00 00 00 00 mov $0x0,%eax
 40055a: e8 b1 fe ff ff callq 400410
 40055f: 8b 05 db 0a 20 00 mov 0x200adb(%rip),%eax # 601040 <glob>
 400565: 89 c6 mov %eax,%esi
 400567: bf 0b 06 40 00 mov $0x40060b,%edi
 40056c: b8 00 00 00 00 mov $0x0,%eax
 400571: e8 9a fe ff ff callq 400410
 400576: b8 00 00 00 00 mov $0x0,%eax
 40057b: 5d pop %rbp
 40057c: c3 retq

#include <stdio.h>

unsigned int glob = 0xdeadbeef;

int main() {
printf("0x%lx\n", (unsigned long)&main);
printf("0x%lx\n", (unsigned long)&glob);
printf("0x%x\n", glob);
return 0;

}

a.out: file format elf64-x86-64

Sections:
Idx Name Size VMA LMA File off Algn
 12 .text 000001b2 0000000000400440 0000000000400440 00000440 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 23 .data 00000014 0000000000601030 0000000000601030 00001030 2**3
 CONTENTS, ALLOC, LOAD, DATA
 24 .bss 00000004 0000000000601044 0000000000601044 00001044 2**0
 ALLOC

global data

address

0x40052d
0x601040
0xdeadbeef

> objdump -d a.out

> objdump -h a.out

text (code) addresses

“Hardcoded” addresses
- At compile time, the linker embeds fixed addresses into the binary

- E.g., for function calls, global variables/constants, jump tables, etc.

- When exec-ed, the OS loads sections of the binary into memory at these

pre-established locations

- Text & Data sections are initialized with contents of binary

- BSS section is zero-initialized

- Starting addresses for initially empty stack & heap are also established

Uniform process address space
Stack (local data)

Heap (dynamic data)

Static/Global data

Text (program code)

stack pointer

break pointer

0x400000

0x600000

0x18f0000

0x7fff00000000

Address space = a lie!
- If processes are simultaneously accessing physical memory …

- Not all text sections can begin at 0x400000

- Not all data sections can begin at 0x600000

- Not all heaps can begin at 0x18f0000

- Not all stacks can begin at 0x7fff00000000

- Uniform process address spaces are an illusion created by the kernel

- To simplify program loading and execution (among other reasons)

Timesharing?
- Can we timeshare memory like we do the CPU?

- Yes, but …

- Need to swap process address space contents between disk and

memory on every context switch

- Prohibitively expensive!!!

- May work for non-preemptive FCFS/batch systems where processes are
expected to use up most or all of physical memory

- Space-sharing is the only generally viable (performant) solution

Software relocation
- Simple option: rewrite all addresses at load-time (in software), so that

processes can occupy memory simultaneously (space-sharing)
000000000040052d <main>:
 40052d: 55 push %rbp
 40052e: 48 89 e5 mov %rsp,%rbp
 400531: b8 2d 05 40 00 mov $0x40052d,%eax
 400536: 48 89 c6 mov %rax,%rsi
 400539: bf 04 06 40 00 mov $0x400604,%edi
 ...

000000000060052d <main>:
 60052d: 55 push %rbp
 60052e: 48 89 e5 mov %rsp,%rbp
 600531: b8 2d 05 60 00 mov $0x60052d,%eax
 600536: 48 89 c6 mov %rax,%rsi
 600539: bf 04 06 60 00 mov $0x600604,%edi
 ...

- Issues?

Software relocation
- Once loaded, cannot easily relocate process in memory

- Software relocation would be complex and time-consuming (and
perhaps impossible, without runtime type information)

- If a process accidentally/maliciously uses a bad address, it could access
another process’s (or the kernel’s) address space!

- Pure software relocation makes address space protection difficult

Hardware address translation
- To support fast, dynamic translation and address space protection,

hardware support for address translation is needed

- Idea:

- All process memory requests (on the CPU) are for virtual addresses

- Hardware translates each request to a physical address

- Kernel sets up mapping from virtual address spaces to physical memory

- Translation hardware is the memory management unit (MMU)

Primary goals
- Transparency

- Processes aren’t involved in (or aware of) the translation process

- Efficiency

- Time (speed/throughput) & Space (utilization)

- Protection

- Processes cannot access data outside their own address spaces

- Isolated from each other and the kernel

Simple implementation: Relocation
- Assumptions:

- Fixed size process address spaces

- Process address space < Physical memory

- Relocation requires a uniform shift for every request

Virtual

Physical

B

N

N+B

- Kernel maintains base address of each process in PCB

- Load into base (address) register in MMU on each context switch

- Relocation = register access + addition

- Problem: protection not guaranteed!

data

PA: N+B

Physical

N
B

Base address

CPU

VA: N

MMU

base reg.
B

Base + Limit registers
- Incorporate a limit register to enforce memory protection

- Assertion failure triggers fault (software 

exception) and loads kernel

data

CPU

VA: N PA: N+B

Physical

B
N

MMU

base reg.
B

limit reg.
L

assert (0 ≤ N ≤ L)

B+L

process
sandbox

- Fast translation via hardware relocation

- Register access & addition/comparison

- Protection is enforced

- But address spaces are mapped 

monolithically — i.e., unused portions 
reserve physical space

- Results in poor utilization B

Virtual

0

L stack

code

Physical

stack

code

unused

Analysis

