
CS 450: Operating Systems
Michael Lee <lee@iit.edu>

Scheduling

mailto:lee@iit.edu

Agenda
- Overview

- Not just one scheduler

- Scheduling metrics

- “Interactive” jobs and responsiveness

- Scheduling policies

- FCFS, SJF, PSJF, RR, HPRN

- MLQ, MLFQ

§Overview

Definition
- Scheduling: policies & mechanisms used to allocate limited resources

to some set of entities

- Initial focus: resource & entities = CPU & processes (aka jobs)

- other possibilities:

- resources: memory, I/O bus/devices

- entities: threads, users, groups

- schedulers for the above may exist in an OS (and must play nice with
each other)!

Policy vs. Mechanism
- high-level “what”

- scheduling disciplines

- e.g., FCFS, SJF, RR, etc.

- driven by a variety of potentially
conflicting goals

- e.g., performance and fairness

- low-level “how”

- combination of HW/SW

- e.g., clock interrupt, high
precision timer, PCB

- scattered throughout kernel
codebase

Schedulers are concerned with transitions

between process states

Ready

Running

Blocked

I/O request 
(e.g., interrupt, syscall)schedule

I/O completion

creation

termination

Ready Blocked

swap in/out swap in/out

preempt

Ready

creation

Domain of the “long-term” scheduler

- choose which jobs are admitted to the system

- may control mix of jobs (e.g., I/O vs. CPU bound)

- not common in general-purpose, time-shared OSes

Domain of the “medium-term” scheduler

- swaps processes out to disk to make room for others

- active when there is insufficient memory

- runs much less frequently (slower!) than CPU scheduler

Ready Blocked

swap in/out swap in/out

Ready

Running
schedule

preempt

Domain of the “short-term” scheduler, i.e., the CPU scheduler

- chooses between in-memory, ready processes to run on CPU

- invoked to carry out scheduling policies after interrupts/traps

relies on clock interrupt  
(to regain control of CPU)

once a job starts, it continues
until it terminates/blocks

Ready

Running
schedule

preempt

Ready

Running
schedule

preemptive scheduling non-preemptive scheduling

Ready

Running
schedule

- convenient to envision a ready queue (though not necessarily FIFO!)

- the scheduling policy decides which job to select from the set of ready
(runnable) jobs to run next

High-level policy considerations
- Preemptive vs. Non-preemptive

- Information available for making informed decisions

- Depends on lower-level mechanisms available

- Scheduling goals

- Based on optimizing/tuning scheduling metrics

§Scheduling Metrics

Some scheduling metrics
- Turnaround time

- Wait time

- Response time

- Throughput

- Utilization

Turnaround time
- Tturnaround = Tcompletion - Tcreation

- i.e., total time to complete job

- Useful metric for a CPU-bound process — how much time is required to
carry out a lengthy computation?

- Not generally a great yardstick for evaluating a scheduler!

- What if job is I/O-bound?

- What if job never “completes”?

Wait time
- Time spent in ready queue

- i.e., runnable, but not actually running

- CPU is busy doing other things

- this is not an ideal state for a process!

- Minimizing wait time is a possible goal for a scheduling policy

Interactive processes
- Turnaround & Wait time may be measured over the entire course of a job

- Not a very relevant metric for interactive processes! (why?)

- Interactive jobs have “bursty” execution — alternate between bursts of
CPU and I/O activity

- May never terminate! (e.g., consider browser, email client, etc.)

- Can compute turnaround/wait times on a per-burst basis

- i.e., how long does a burst (of CPU activity) need to complete/wait
before getting to the next I/O burst?

5.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 2, 2005

Alternating Sequence of CPU And I/O BurstsAlternating Sequence of CPU And I/O Bursts

“bursty” execution

5.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 2, 2005

Histogram of CPUHistogram of CPU--burst Timesburst Times

burst length histogram

“Responsiveness"
- For interactive jobs, improving responsiveness is arguably more

important than optimizing total turnaround/wait times

- How to quantify this?

- Response time: Tresponse = Tfirstrun - Tarrival

- i.e., 	how soon is a job given a chance to run after becoming ready?

- What’s wrong with this? (consider requirements for “interaction”)

- How might we improve this metric?

Throughout & Utilization
- Aggregate metrics

- Throughput: # of completed jobs or bursts per unit time

- e.g., 5 processes / minute, 25 CPU bursts / second

- Utilization: percentage of time CPU is busy running jobs

- Context switch time counts against utilization!

- CPU can be idle if there are no active jobs or if all jobs are blocked

“Fairness”
- What does it mean?

- How to measure/quantify it?

- Is it useful?

- How to enforce it?

- Prioritizing fairness may lower performance — which is more important?

§Scheduling Policies

First come first served (FCFS)

Wait times:	P1 = 0, P2 = 24, P3 = 27

Average:	(0 + 24 + 27) / 3 = 17

Process Arrival Time Burst Time
P1 0 24
P2 0 3
P3 0 3

P1 P2 P3

24 27 300 “Gantt chart”

Convoy Effect

Process Arrival Time Burst Time
P3 0 3
P2 0 3
P1 0 24

P3 P2 P1

3 6 300

First come first served (FCFS)

Wait times:	P1 = 6, P2 = 3, P3 = 0

Average:	(6 + 3 + 0) / 3 = 3

(better for everyone)

Shortest Job First (SJF)
- “Obvious” improvement to FCFS

- What metric(s) are we improving?

- Still a non-preemptive policy — i.e., once a job starts executing a CPU
burst, it runs until it blocks (or completes)

Shortest Job First (SJF)

0

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

P2 waits

P3 waits

P4 waits

P1 P3 P2 P4

0

P2 waits

P3 waits

P4 waits

P1 P3 P2 P4

Shortest Job First (SJF)

Wait times:	P1 = 0, P2 = 6, P3 = 3, P4=7

Average:	(0 + 6 + 3 + 7) / 4 = 4

(can we do better?)

Preemptive SJF (PSJF)
- aka “Shortest Time-to-Completion First” (STCF)

- aka “Shortest Remaining-Time First” (SRTF)

- May preempt running job to schedule a different (ready) job

P1 P3 P4
0

P2 P2 P1

P1 waits

P2 waits

P4 waits

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

Wait times: 	 P1 = 9, P2 = 1, P3 = 0, P4 = 2

Average:	 (9 + 1 + 0 + 2) / 4 = 3 (vs SJF @ 4)

Greedy algorithms
- SJF/PSJF are greedy algorithms

- i.e., they select the best choice at the moment (“local maximum”)

- Greedy algorithms don’t always produce globally maximal results

- e.g., naive hill-climbing algorithm (only take a step if it brings me to
higher ground) doesn’t always find the tallest peak!

- Are SJF/PSJF optimal?

local

max

global

max

Optimal?
- Consider 4 jobs with burst lengths t0, t1, t2, t3 that just became ready

- What is the average wait time if scheduled in the order given?

= (3∙t0 + 2∙t1 + t2) / 4

- Weighted average — clearly minimized by running shortest jobs first!

- SJF/PSJF are provably optimal with respect to average wait time

- But at what cost?

- Potential CPU starvation! (e.g., longer jobs keep getting put off)

A snag: no Oracle
- We’ve been assuming that job/burst lengths are known in advance

- May be possible in rare circumstances (e.g., repeated jobs, job profiling),
but unlikely in practice

- Common approach: predict future burst lengths based on past behavior

- Simple moving average (sliding window of past values)

- Exponentially weighted moving average (EMA)

Exponential Moving Average (EMA)
- Observed:	 ρn-1

- Estimated:	 σn-1

- Weight (α):	 0 ≤ α ≤ 1

- Predicted: 	 σn = α⋅ρn-1 + (1–α)⋅σn-1

- i.e., bigger α = more weight given to observed data

Actual Avg (3) Error EMA (α=0.2) Error

4 5.00 1.00 5.00 1.00
5 4.00 1.00 4.80 0.20
5 4.50 0.50 4.84 0.16
6 4.67 1.33 4.87 1.13
13 5.33 7.67 5.10 7.90
12 8.00 4.00 6.68 5.32
11 10.33 0.67 7.74 3.26
6 12.00 6.00 8.39 2.39
7 9.67 2.67 7.92 0.92
5 8.00 3.00 7.73 2.73

5.2

7.4

9.6

11.8

14.0

Actual Avg (3) EMA

Avg err: 2.78 Avg err: 2.50

Round Robin (RR)
- The “fairest” of them all

- Uses a FIFO queue:

- Each job runs for a maximum fixed time quantum q

- If unfinished, re-enter queue at the tail end

- Given time quantum q and n jobs:

- max wait time (per cycle) = q ∙ (n – 1)

- each job receives 1/n timeshare

P1 waits
P2 waits

P1 waits
P2 waits

P3 waits
P4 waits P4 waits

P1 P3
0

P2 P1 P4 P2 P1 P4

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

RR q=3

Wait times: 	 P1 = 8, P2 = 8, P3 = 5, P4 = 7

Average:	 (8 + 8 + 5 + 7) / 4 = 7

Avg. Turnaround Avg. Wait Time

RR q=7 8.75 4.75
RR q=4 9 5
RR q=3 11 7
RR q=1 9.75 5.75

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

(FCFS)

Throughput Utilization

RR q=7 0.25 1.0
RR q=4 0.25 1.0
RR q=3 0.25 1.0
RR q=1 0.25 1.0

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

Another snag: context switch time
- CST = interrupt + context switch + scheduler

- ~1 µs in Linux on recent hardware

- Each time we preempt a job we introduce systemic overhead (i.e., costs
not incurred by the job itself) and reduce utilization

- Longer quantum times help amortize the cost of CSTs

- Just measuring CST oversimplifies the cost of context switches

- E.g., cache perturbation significantly affects execution efficiency

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

(CST=1) Avg. Turnaround Avg. Wait Time

RR q=7 10.25 6.25
RR q=4 11.5 7.25
RR q=3 16.25 11.25
RR q=1 20.25 13.25

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

(CST=1) Throughput Utilization

RR q=7 0.2 0.8
RR q=4 0.19 0.762
RR q=3 0.167 0.667
RR q=1 0.125 0.5

Tuning q
- Generally, try to choose q to help tune system responsiveness

- May use different predictors:

- Predetermined burst-length threshold (for interactive jobs)

- Median of EMAs

- Process profiling

- RR prevents starvation and allows both CPU-hungry and interactive jobs
to share resources fairly

- But potentially at the cost of poor turnaround/wait times!

Which is which?
Simulation: SJF / PSJF / RR q=10 / RR q=20
processes: uniform bursts ≤ 20, CST = 1.0

Priority Schedulers
- Can implement more fine-grained scheduling policies by introducing a

system of arbitrary priorities, gathered/computed by the scheduler

- Process with maximum priority is scheduled

- SJF/PSFJ are priority schedulers! (priority = 1 / predicted burst length)

- Starvation due to priority scheduling may be combatted by aging

- But there may be other insidious issues!

Highest Penalty Ratio Next (HPRN)
- Example of a priority scheduler that implements aging

- Two statistics maintained by scheduler for each job:

1. “wall clock” age, t

2. total CPU execution time, e

- Priority is the “penalty ratio” = t / e

- ∞ when job is first ready, decreases as job receives CPU time

- In practice would incur too many context switches!

- Can institute a minimum execution quantum (is this RR?)

Process Priority State
P1 High Ready
P2 Mid Ready
P3 Mid Ready
P4 Low Ready

E.g., another possible problem due to priority scheduling: priority inversion

request
all

oc
ate

d

Process Priority State
P1 High Running
P2 Mid Ready
P3 Mid Ready
P4 Low Ready

Resource

P1 P2 P4P3

(mutually exclusive allocation)

Process Priority State
P1 High Blocked
P2 Mid Ready
P3 Mid Ready
P4 Low Ready

request

P1 P2 P4

Resource

P3

all
oc

ate
d

(mutually exclusive allocation)

Process Priority State
P1 High Blocked
P2 Mid Running
P3 Mid Ready
P4 Low Ready

request

P1 P2 P4

Resource

P3

all
oc

ate
d

(mutually exclusive allocation)

request

P1 P4

Resource

P3

all
oc

ate
d

Process Priority State
P1 High Blocked
P2 Mid Done
P3 Mid Running
P4 Low Ready

(mutually exclusive allocation)

request

P1 P4

Resource

all
oc

ate
d

Process Priority State
P1 High Blocked
P2 Mid Done
P3 Mid Done
P4 Low Running

(mutually exclusive allocation)

request

P1

Resource

Process Priority State
P1 High Blocked
P2 Mid Done
P3 Mid Done
P4 Low Done

(mutually exclusive allocation)

P1

Resource

allocated

Process Priority State
P1 High Ready
P2 Mid Done
P3 Mid Done
P4 Low Done

(mutually exclusive allocation)

P1

Resource

allocated

Process Priority State
P1 High Running
P2 Mid Done
P3 Mid Done
P4 Low Done

(mutually exclusive allocation)

(Finally!)

e.g., NASA Pathfinder (1996-1997)
- Real-time OS (vxWorks) developed a recurring system failure/reset after

robot was deployed to surface of Mars

- Culprit: unanticipated flood of meteorological data coupled with low
priority of the data gathering job (ASI/MET)

- ASI/MET held onto a resource needed by the high priority data
distribution job (bc_dist), but ASI/MET was superseded by  
medium-priority jobs

e.g., NASA Pathfinder (1996-1997)
- Scheduler determined that bc_dist couldn’t complete by the hard  

deadline set by the RTOS

- Declared error and performed system reset to “fix” scheduling!

- Reproduced in lab on Earth after 18 hours of simulation

e.g., NASA Pathfinder (1996-1997)
- Fix: priority inheritance

- Lower priority job inherits the priority of the job waiting for its resource

- i.e., run ASI/MET at the priority of bc_dist until resource released

- Engineers remote-patched robot from Earth, enabling priority inheritance
for the in-demand resource in vxWorks OS (why wasn’t it enabled before?)

- Hailed as an operational success!

	 “Our before launch testing was limited to the “best
case” high data rates and science activities… We did
not expect nor test the “better than we could have
ever imagined” case.”

- Glenn Reeves  
Software team lead

Scheduling is rocket science!
- Jobs are unpredictable, and interactions between jobs even more so

- Priority-based scheduling is useful, as it may help us optimize different
scheduling metrics. But there are potential downsides:

- Starvation and Priority inversion

- Not all jobs require the same sort of optimization!

- E.g., CPU-bound vs. interactive jobs

- Would like a mechanism that allows us to optimize for different metrics
across separate groups of processes

Multi-Level Queue
- Idea: disjoint ready queues, with separate scheduling policies

- E.g., Fixed priority

RR (small q)

FCFS

RR (larger q)

system

interactive

normal

batch

Multi-Level Queue
- Requires a queue arbitration policy, i.e., which queue to select jobs from?

- Approach 1: select jobs from
top, non-empty queue

system

interactive

normal

batchde
cr

ea
si

ng
 p

rio
rit

y

- Approach 2: allocate macro
time slices to each queue

system

interactive

normal

batch

50%

30%

15%

5%

Multi-Level Queue
- Which jobs go in which queues?

- Can be self-declared/assigned

- e.g., UNIX “nice” value

- Can jobs be trusted?

- Jobs can be profiled based on initial burst(s)

- e.g., short, periodic CPU bursts → classify as interactive job

- May be gamed by programmers looking for better treatment

Shifting requirements?
- More important issue: what if job requirements change dynamically?

- E.g., photo editor: tool selection (interactive) ➞ apply filter (CPU-bound)
➞ simple edits (interactive) → apply compression (CPU-bound) …

- Scheduler should respond to changes in job requirements by applying
appropriate policies

- While maximizing responsiveness and efficiency where possible!

RR (q=2)

RR (q=4)

RR (q=8)

Multi-Level Feedback Queue (MLFQ)
- Supports movement between queues after initial assignment

- Based on dynamic job characteristics (mostly discerned from burst
lengths relative to allocated quanta)

- e.g., 3 RR queues with different q

Multi-Level Feedback Queue (MLFQ)
- Rules:

- Only select from highest non-empty queue

- Within a queue, schedule using RR

- New jobs enter into highest priority queue

- If job uses entire quantum, move down
(deprioritize)

decreasing priority

RR (q=2)

RR (q=4)

RR (q=8)

0
P1

P1

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

RR (q=2)

P1 RR (q=4)

RR (q=8)

P1
0

P2

P2

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

RR (q=2)

P2 P1 RR (q=4)

RR (q=8)

P1
0

P2

P3

P3

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

RR (q=2)

P2 P1 RR (q=4)

RR (q=8)

P1 P3
0

P2

P4

P4

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

RR (q=2)

P4 P2 P1 RR (q=4)

RR (q=8)

P1 P3
0

P2 P4 P1

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

RR (q=2)

P4 P2 RR (q=4)

P1 RR (q=8)

P1 P3
0

P2 P4 P1 P2

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

RR (q=2)

P4 RR (q=4)

P1 RR (q=8)

P1 P3
0

P2 P4 P1 P2 P4

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

RR (q=2)

RR (q=4)

P1 RR (q=8)

P1 P3
0

P2 P4 P1 P2 P4 P1

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

Wait times: 	 P1 = 9, P2 = 7, P3 = 0, P4 = 6

Average:	 (9 + 7 + 0 + 6) / 4 = 5.5

	 	 (vs 7 for RR, q=3)

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

P1 P3
0

P2 P4 P1 P2 P4 P1

Other rules?
- These rules may be gamed

- e.g., job may keep relinquishing CPU to retain priority

- May keep track of total time allotment for a job in a given queue and
move down when exhausted

- When to move back up?

- Book suggests moving all jobs to top queue periodically

- Alternative: move up if job completes burst in less than a quantum

RR (q=2)

RR (q=4)

RR (q=8)

0

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

RR (q=2)

RR (q=4)

RR (q=8)

0

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

Pf

Pf

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf

Pf Pf

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

RR (q=2)

RR (q=4)

RR (q=8)

0
Pf Pf

Pf

Pf

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

RR (q=2)

RR (q=4)

RR (q=8)

0
Pf Pf Pf

(I/O)

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

RR (q=2)

RR (q=4)

RR (q=8)

0
Pf Pf Pf

(I/O)

Pf

Pf

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

RR (q=2)

RR (q=4)

RR (q=8)

0
Pf Pf Pf

(I/O)
Pf

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

(I/O)

RR (q=2)

RR (q=4)

RR (q=8)

0
Pf Pf Pf

(I/O)

Pf

Pf

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

(I/O)
Pf

RR (q=2)

RR (q=4)

RR (q=8)

0
Pf Pf Pf

(I/O)
Pf Pf

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

(I/O) (I/O)

RR (q=2)

RR (q=4)

RR (q=8)

0
Pf Pf Pf

(I/O)
Pf

Pf

Pf

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

(I/O) (I/O)
Pf

RR (q=2)

RR (q=4)

RR (q=8)

0
Pf Pf Pf

(I/O)
Pf Pf

Pf

Pf Pf

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

(I/O) (I/O)

RR (q=2)

RR (q=4)

RR (q=8)

e.g., Pflaky arrives at t=0

	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

0
Pf Pf Pf

(I/O)
Pf Pf Pf Pf

(I/O) (I/O)

MLFQ summary
- Many parameters may be needed to fine-tune an MLFQ scheduler

- Behavior may be driven by a combination of heuristics and
mathematical/algorithmic optimization

- Hard to avoid the use of “magic numbers” that work for specific
systems and workloads

- MLFQ helps dynamically identify and balance interactive and CPU-bound
jobs — a popular choice in modern operating systems!

