Full Name: _____

CS 450 Summer 2019 Midterm Exam

June 12, 2019

Instructions:

- This exam is closed-book, closed-notes.
- Calculators are not permitted. Endeavor to leave your computed answers in fraction form.
- For computed answers, you must show your work for credit.

Problem 1	(/10):
Problem 2	(/12):
Problem 3	(/8) :
Problem 4	(/8) :
Problem 5	(/9) :
Problem 6	(/6) :
Problem 7	(/6) :
TOTAL	(/59):

Problem 1. (10 points):

Multiple choice. For each of the following multiple choice problems, choose the *single best* answer by **circling**.

- 1. What statistic is most likely to be used to help identify interactive jobs for scheduling purposes (e.g., as in a MLFQ)?
 - a. average CPU burst length
 - b. total process turnaround time
 - c. total number of I/O bursts
 - d. total CPU execution time
- 2. Which of the following state transitions will never take place in a FCFS scheduler?
 - a. ready \rightarrow running
 - b. running \rightarrow ready
 - c. running \rightarrow blocked
 - d. blocked \rightarrow ready
- 3. Which of the following scheduling policies may exhibit starvation?
 - a. FCFS
 - b. Round-robin
 - c. Non-preemptive SJF
 - d. Highest penalty ratio next
- 4. Which of the following scheduling policies requires the use of a predictive mechanism such as the exponential moving average (EMA)?
 - a. Round-robin
 - b. Non-preemptive SJF
 - c. Selfish round-robin
 - d. Highest penalty ratio next
- 5. Which of the following is *not* necessarily true of a stable M/G/1 queueing system with average arrival and service rates λ and μ , and average number of waiting customers $E(L_q)$?
 - a. the server utilization (ρ) is the ratio of λ and μ
 - b. new arrivals will see an average of $E(L_q)$ waiting customers
 - c. the average residual service time (T_r) equals the average service time $(\frac{1}{u})$
 - d. Little's law can predict average wait time $(E(T_q))$ directly from λ and $E(L_q)$

Problem 2. (12 points):

Briefly answer each of the following questions in the space provided.

1. List and briefly describe two advantages and two disadvantages a microkernel architecture is likely to have when compared to a monolithic kernel architecture.

2. How might an OS kernel leverage the x86 architecture to implement a secure handoff between user processes and privileged kernel code (as in a system call)?

3. Describe a scenario that demonstrates *priority inversion*, and explain how it might be averted.

Problem 3. (8 points):

Complete the diagram below by adding and labeling directed edges between the nodes, indicating possible process state transitions. While you need not label all the edges you draw, at a minimum you should indicate those transitions that correspond to:

- a. Arrival
- b. Preemption
- c. I/O request / Syscall
- d. I/O request completion
- e. Scheduler selection
- f. Completion

You may simply write the corresponding letter for each label given above next to the appropriate edge. Labels may be used more than once.

Problem 4. (8 points):

Consider a scheduling simulation involving 20 processes, each running for a total duration of 1000ms spread over separate CPU bursts ranging uniformly in duration from 25ms to 75ms. The following four scheduling policies are used in the simulation:

- FCFS
- RR, q=50
- SJF (non-preemptive)
- PSJF

The following are the results of the simulation (policies not in order):

Policy	Total CST	Avg wait time	Std dev of wait time
#1	1212	17772	21.16
#2	816	12106	235.68
#3	816	17152	19.59
#4	980	12143	240.09

Which policies correspond to #1, #2, #3 and #4? Justify your answers.

Problem 5. (9 points):

The following are arrival times and CPU burst durations for five processes.

Process	Arrival Time	CPU Burst
P_0	0	8
P_1	3	4
P_2	8	2
P_3	12	5
P_4	13	3

Complete the following table with the individual process and average waiting times for each of the indicated scheduling policies. Ignore context switch overhead.

	Wait Times					
Scheduling policy	P_0	P_1	P_2	P_3	P_4	Avg wait time
First-Come First-Served						
Non-preemptive Shortest Job First						
Round-Robin with quantum= 3						

Use the space below (or on the back of this page) for your work. You may wish to draw a Gantt chart for each scheduling algorithm — if your results above are incorrect, the charts may be evaluated for partial credit.

Page 6 of 7

These equations may be useful for the following queueing theory problems. Please show your work!

Little's Law:	$E(L) = \lambda E(T)$	
M/M/1:	$E(T_q) = \frac{\rho}{\mu(1-\rho)}$	$E(T) = E(T_q) + E(T_s)$
M/G/1:	$E(T_q) = \frac{\rho E(T_r)}{1 - \rho}$	$E(T_r) = \frac{C_{T_s}^2 + 1}{2} \cdot E(T_s)$

Problem 6. (6 points):

Consider a web server with an exponentially distributed average service time of 1ms. Assuming arrivals follow a Poisson process:

- 1. If we require that the average turnaround time of a request sent to the server be no more than 3ms, what is the maximum average arrival rate the server can tolerate?
- 2. When the average arrival rate is equal to your answer in part (1), how many requests on average are waiting to be serviced?

Problem 7. (6 points):

The average amount of time customers wait in line at the campus bookstore is 6 minutes. Monitoring the checkout clerk reveals that he is only busy $\frac{1}{3}$ of the time, and that service times are non-exponentially distributed with $C^2 = 2$. Assuming arrivals follow a Poisson process:

- 1. What is the average service time of the checkout clerk?
- 2. After a campus-wide marketing effort, the clerk finds that he is now busy $\frac{2}{3}$ of the time. What is the new average waiting time (assuming the service time distribution doesn't change)?