Concurrency

CS 442: Mobile App Development

Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

concurrency | ken'kerenseé |
noun

the fact of two or more events or circumstances
happening or existing at the same time

New Oxford American Dictionary

Concurrency in computing

* Multi-processing
 Multi-threading
 Parallelism

* Asynchronous programming

memory

Multi-processing

 Based on the operating system
unit of execution: the process

 No shared memory

e Via virtual address spaces

* |ndependent control flow
e On one or more CPU cores

 May require context switching

memory

Multi-threading -

* Separate flows of control (threads) pProcess
within the same process nain()

é B
 Shared program {
N)

 Shared global/heap memory

» Typically, separate stacks !
scheduler

 Threads may execute on one or
more CPU cores

Parallelism

 Parallelism = simultaneous execution
of two or more processes/threads

* Requires multiple CPU/GPU cores
 Concurrency does not imply parallelism!

* Concurrency can be achieved by
time-multiplexing (aka time-slicing)

» Parallelism is one form of concurrency

Benefits/Limits of Parallelism

* Parallelism may allow some * [wo formulae for estimating
programs to complete faster speed-up via parallelization:
* By running parallelizable portions « Amdahl’s law

simultaneously Gustatsons |
 (Gustafson’s law

 This Is a big draw!

 But not all programs are easily
parallelized

 E.g., there may be serial
dependencies

Amdahl’s law
172 1] LG e ——

1 (perfectly 1 CPU
Sa(n) = parallelizable)

L+ (1-p)

 nisthe # of CPUs and p is the

—_—
task |

parallelizable fraction of the 2 CPUs
program
 ———
 Assumption: fixed problem size task

» Completed in less time 4 CPUs

Gustafson’s law

task —

(50% 1 CPU

SG (n) e D+ np parallelizable)

—
task —

e Assumption: problem size can be -
scaled up to take advantage of 2 CPUs
computing power

>
e Same completion time, but more task S ——
work done (e.g., at higher E——

| _—
resolution) 4 CPUs

Is Concurrency useful without Parallelism?

* Yes! How? addressed by

- asynchronous

e Simulating multitasking programming!

* e.0., many tasks on OS with 1 CPU '
"+ Improving hardware utilizaton
* e.g., let another task use CPU while one performs I/O
o Software design tool

* e.g., separate logical flows of control vs. a single monolithic one ,:

Asynchronous programming

Data loadData(Uri url) ¢

 Paradigm that allows tasks to)
_ Future<Response> response = http.get(url);
exeCUte Independently Of the response.then((res) ¢
Originanain COntrOl ﬂOW Future<Data> data = processResponse(res.body);
data.then((value) ¢{
_ _ _ return value;
» Different supporting mechanisms; 3);
3);
3

 (Callback functions

° PrOmises/FutureS Future<Data> loadData(Uri url) async £

var response = await http.get(url);
var result = await processResponse(response.body);

¢ await/asynC semantics return result:
3

Where is the concurrency?

Future<Data> loadData(Uri url) async § void main() ¢{
var response = await http.get(url); Future<Data> data = loadData('https://...");
var result = await processResponse(response.body); doSomethingElse();
return result; data.then((value) => print('Loaded: $value'));
3 _ _ 3
awaltss awaltss

1 D ——

%l
<«
’

loadData concurrency!

. S
http.get (potential parallelism?)

processResponse

g lH H H BH H H B B =B =B =B =B = » - -
Il - E E E E E E B B B B =B m =

doSomethingElse

(Potential) Problems with Concurrency

» When multi-threading, shared shared var:
memory can lead to race conditions int counter = 0;
o Simple example: concurrent thread 1-

iIncrement of shared variable
counter = counter + 1;

 Final counter value?
thread 2:

* 1 or 2 (unpredictable!) counter = counter + 1;

Can asynchronous code — race conditions?

Future<void> incrementCounter() async ¢§ vold main() ¢
for (int 1 = ©; i < 1000; i++) § counter = 0O;
int temp = counter; incrementCounter();
await ...; incrementCounter();
counter = temp + 1; .
3 3
} await\ await
main — > ceeeeeeeeees > |
inCCtr(‘I) T : E
incCtr(2) ! g :

concurrency!

Can asynchronous code — race conditions?

Future<void> incrementCounter() async ¢§ vold main() ¢
for (int 1 = ©; i < 1000; i++) § counter = 0O;
int temp = counter; incrementCounter();
await ...; incrementCounter();
counter = temp + 1; e
3 3

3

counter updated

f before next increment

_ async _
temp=0 ", counter=1

incCtr(1)
async

: i temp=1 counter=2
incCtr(2) P

Can asynchronous code — race conditions?

Future<void> incrementCounter() async ¢§ vold main() ¢
for (int 1 = ©; i < 1000; i++) § counter = 0O;
int temp = counter; incrementCounter();
await ...; incrementCounter();
counter = temp + 1; e
} 3

3

(“Iost” update!

| temp=0 "4 counter=1
incCtr(1)

| temp=0 e counter=1
incCtr(2) -

\ pre-update value used

Does this fix 1t?

Future<void> incrementCounter() async ¢{ vold main() ¢
for (int 1 = ©; i < 1000; i++) § counter = 0O;
await ...; incrementCounter();
counter = counter + 1; incrementCounter();
3
% J; __ access order
Pt may lead to
awatit .. await e 2 race
R LR R ""
[| , ':) }
main —— —— il > - :
i v i
. : i%?ﬂ ' counter = counter + 1. |
ncCtr(1) ~ —t T
I async '
L counter = counter + 1
. gap :
incCtr(2) —s¥-1 —_—

concurrency!

How to “cancel” the race?

counter = counter + 1

counter = counter + 1

Enforce serial execution!

counter = counter + 1

counter = counter + 1

Single-threaded model

 Many asynchronous programming platforms execute all tasks — including the
“main” flow of control and asynchronous code — in a single thread

* Avoids overlapping execution, and helps mitigate race conditions
 Central mechanism is the event loop
 Draws from a queue of tasks that are ready to run

 Executes them sequentially

The Event Loop

L4 I.O input (e_.g., asyne tree rebuild frame redraw l
completion tap/swipe) operation \

event queue
event

loop

How does this run on the event loop?

Future<Data> loadData(Uri url) async £ void main() ¢{
var response = await http.get(url); Future<Data> data = loadData('https://...");
var result = await processResponse(response.body); doSomethingElse();
return result; data.then((value) => print('Loaded: $value'));
3 3

=)

How does this run on the event loop?

Future<Data> loadData(Uri url) async £ void main() ¢{
var response = await http.get(url); Future<Data> data = loadData('https://...");
var result = await processResponse(response.body); doSomethingElse();
return result; data.then((value) => print('Loaded: $value'));
3 3

Q)

Future<Data> data = loadData('https://...");

await http.get(url)
doSomethingElse();
data.then((value) => print('Loaded: $value'));

registers callback --=-========="""

How does this run on the event loop?

Future<Data> loadData(Uri url) async £ void main() ¢{
var response = await http.get(url); Future<Data> data = loadData('https://...");
var result = await processResponse(response.body); doSomethingElse();
return result; data.then((value) => print('Loaded: $value'));
3 3

R

http.get(url)

process...

// http.get implementation
var response = nesdult;

await processResponse(response.body)

How does this run on the event loop?

Future<Data> loadData(Uri url) async £ void main() ¢{
var response = await http.get(url); Future<Data> data = loadData('https://...");
var result = await processResponse(response.body); doSomethingElse();
return result; data.then((value) => print('Loaded: $value'));
3 3

callback: ‘

processResponse(response.body)

async:

print(...) process...

// processResponse implementation
var result = 7nesult;

return result;

How does this run on the event loop?

Future<Data> loadData(Uri url) async £ void main() ¢{
var response = await http.get(url); Future<Data> data = loadData('https://...");
var result = await processResponse(response.body); doSomethingElse();
return result; data.then((value) => print('Loaded: $value'));
3 3

P
N

print('Loaded: $value')

callback:

print(...)

Flutter uses a single-threaded event loop!

e (So does in-browser JavaScript, Node.|s, i0S, and many more)

* All widget builds are serialized, and cannot happen while other operations
(e.g., state changes) are taking place

* Pros/Cons?
* Mitigates some (all?) race conditions

* Potential for Ul lag (aka stutter/jank)

Is Ul lag possible here?

Future<Data> loadData(Uri url) async £ Widget build(BuildContext context) ¢
var response = await http.get(url); return ElevatedButton(
var result = await processResponse(response.body); onPressed: () => loadData('https://..."),
return result; child: const Text(‘Load data’)
3) ;
3

»

process
Response

frame redraw

frame redraw

If longer than 1000/60 ms, jank!

Dart/Flutter solution: Isolates

 Can run functions in separate, quasi-sandboxed threads: isolates

» Communicate through “message-passing”

