
Flutter Architecture

CS 442: Mobile App Development

Agenda

– Flutter architecture overview
– Widgets
– Declarative UIs
– Rendering pipeline

Diagrams from Flutter Architectural overview

Flutter Architecture

–
Layered / Ring architecture
–
3 layers: Framework, Engine, Embedder
–
All the layers and pieces are open-source! This is great for folks who want to
build their own embedders (e.g., for other platforms) and those working on Flut‐
ter apps who want to better understand how base classes work / what they
provide.

Embedder
– Integrates with the OS/HW layer to access low-level services (e.g., for drawing,
device features, I/O)
– Connects higher-level Flutter code to the system event loop
– E.g., written in Objective-C for iOS, Java for Android

Engine (C/C++)

https://docs.flutter.dev/resources/architectural-overview

– Takes higher-level scenes (built from widgets) and rasterizes them (i.e., cre‐
ates pixel-level renderings)
– Includes efficient implementations of Flutter & Dart APIs
– Communicates with the embedder

Framework (Dart)
– Defines pre-built widgets for composing UIs
– Defines APIs for creating new widgets
– Performs high-level scene compositing
– We will live here most/all of the semester!

Flutter app
– Dart App: our code -- mostly de‐
fines and composes widgets
– Framework: pre-built widgets;
composites scenes from our
definitions
– Engine: low-level API implemen‐
tations; rasterizes scenes
– Embedder: works with OS
– Runner: synthesizes all compo‐
nents into a runnable "app"
package

Widgets all the way down
– Just about all our Flutter code goes towards defining "Widgets" ("components"
in React)
– Some inheritance, but primary mechanism we use for building UIs is
composition
– Widgets that contain widgets that contain widgets, etc.

"Declarative" UI
–
vs. imperative style of UI construction
–
e.g., instantiate a "View" object, then configure it over many lines/method calls
(implies mutable UI elements)

–
in the declarative style, immutable UI elements are often configured in a single
constructor call

// Imperative style

var par = WidgetA();

par.setTitle('Some title');

par.setColor(Color.red);

var childWidget = WidgetB();

childWidget.setTitle('Some title');

par.addChild(childWidget);

// Declarative style

return WidgetA(

 title: 'Some title',

 color: Color.red,

 child: const WidgetB(title: 'Some title')

);

What is a widget?
–
A widget is a class that corresponds to some part of the UI
–
Widgets are immutable! I.e., once constructed, they cannot be changed
–
A widget describes how its attributes (which are all final) are translated into a
corresponding element in the UI
–
A UI is based on a hierarchy / tree of immutable widgets
–
Note: because widgets are immutable, "changing" UI attributes necessitate re‐
constructing parts of the widget tree
–
But Dart is also good at reusing objects -- especially if they are declared const

Flutter is, at its core, a series of mechanisms for efficiently walking the modi‐
fied parts of trees, converting trees of objects into lower-level trees of objects,
and propagating changes across these trees.

How do widgets get rendered?

I.e., how does Flutter take an instance of a Widget class and render its on-screen
analog?

Container(

 color: Colors.blue,

 child: Row(

 children: [

 Image.network('https://www.example.com/1.png'),

 const Text('A'),

],

),

);

Example from Flutter Architectural Overview

The widget tree

Container(

 color: Colors.blue,

 child: Row(

 children: [

 Image.net‐

work('https://www.example.‐

com/1.png'),

 const Text('A'),

],

),

);

Note that some widgets are composed
of other widgets (e.g., Containers insert

ColoredBoxs, Images insert RawImages, etc.

Widgets → Elements

https://docs.flutter.dev/resources/architectural-overview

In the build phase, Flutter takes the
widget tree and translates it into a cor‐
responding element tree, with one ele‐
ment per widget.

Two types of elements:
– ComponentElement : a container for oth‐
er elements

– RenderObjectElement : an element used in layout/painting
Importantly, even though widgets / parts of the widget tree are frequently recon‐
structed, Flutter "walks" the widget tree and carefully rebuilds only select parts of the
element tree.

Layout & Rendering

In these phases, each RenderObject‐
Element is used to create/update a Ren‐
derObject subclass. Note: these aren't
primitive / low-level / pixel-level
representations!

Box constraint model

To perform layout, Flutter walks the
render tree in a depth-first traversal
and passes down size constraints
from parent to child. In determining
its size, the child must respect the
constraints given to it by its parent.
Children respond by passing up a

size to their parent object within the constraints the parent established.
This is an efficient algorithm () for laying out all objects in the render tree.

Ultimately, every RenderObject will have a defined size/position, and can be com‐
posited and rendered by the Engine & Embedder layers.

Flutter is, at its core, a series of mechanisms for efficiently walking the modi‐
fied parts of trees, converting trees of objects into lower-level trees of objects,
and propagating changes across these trees.

O(N)

