
Big- step semantics

(+ introduction to semantics)



"

semantics
"

= meaning /significance (ancient Greek)d

of programs

vs -

"

syntax
" (rules for writingvalid programs)



i.e.
, given a program

- a collection of valid

syntactic objects . . .

semantic analysis describes✓the program
's behavior

mathematically



"

Mathematical " ?

- rigorous / precise
- abstract/ symbolic representation
- amenable to proof methods
(e.g. , proof by induction)



Approaches to modeling semantics

☆ - Operational semantics - describe the execution of aprogram
and its effects directly , as on an abstract machine

-Denotational semantics - model language constructs as
"denotations"

,

i.e.
,
values in a mathematical domain , and reason aboutthose

- Axiomatic semantics - describe a program
in terms of logical

predicates that are satisfied before andafter its execution



Type of Operational semantics

☆ - Big - step - evaluate an entire expression in onebig step
e ✓ : expression e evaluates

to valve V

- small - step- evaluation is
modeled as a series of small steps

e→ e
'
→ e

"

→e
' "
→ . _ .

→ ✓

e→
*
v : e evaluate to ✓ after a seriesof steps



How can we assert/prove that evaluations and computations
proceed a certain way?

need to tn able to :

1. make assertions about individual syntactic objects
2

.

connect these assertions

3. use these connections to create larger
narratives (proofs ! )



Inference Rules

form of a rule : [NAME]Pʳmise''''Mmi[side conditions]conclusion

where each premise & the conclusion is
→assertion about a syntactic objectaka " judgement

"

e.g. , assertions : n is odd
e→ e

'

eW v

1- e : t←type of e ist



Inference Rules

form of a rule : [NAME]Pʳmi%;ah!?i[ side conditions]

meaning of a rule : if all premises (
and sideconditions ,ifpresent) hold ,

then the conclusion holds

a rule w/ ne premises is an axiom ,

otherwise it is a propertied



e.g. inference rules forever/odd integers overmultiplication

MODO- ✗ mod 2=0 MODI#
✗ mod 2=1

✗ is even

EVEN✗EVENÉw ☒EVEN ddYiw•
✗*yis even ✗*yis even

EVEN✗ODD✗iÉ ◦*✗⇔ fishy
✗ *yiseven x*y

is odd



ProofTrees

-

we can derive a prooftree for a given assertion ,
where :

- the root of the proof tree (its final conclusion) is the
assertion we wish to prove
- each subtree is a proof tree of the conclusion 's premises

leaves
=
axioms

← ↓
FI E-

e.g.



Derivation strategies
- forward chaining / bottom - up construction
- start up axioms and work towards conclusion

- end goal may not be reachable
- when to stop ?

- backward chaining /top-down construction

- start w/ conclusion and work
" backwards" towards a✗loins

- goal is known - can we derive it ?



e.g. , prove
"

21347 ✗ 12345 is odd
"

MODI -21347
mod2=1

ODD✗ODD ,,?45idd
>345m04



Big-step semantics

- a big-step semantic rule makes an
assertion about what

a syntactic object would evaluate to on an abstractmachine

- state of the abstract machine (aka "configuration") includes :

- the syntactic object to evaluate G.g. , expressions,
statements ,etc .)

- the environment (e.g. , variable→ value mappings)



The Evaluation Relation :
"I

"

↓ is a relation over :

- •i.⇔EÉ÷;- syntactic objects

- possible results

we winter (ai "mixfix " form) : {s ,of ↓ r



"

syntactic objects
"

i.e. , as found in a program written in some language .

- what syntactic objects are possible/valid
?

- need a formal way of specifying a language
- Grammars



a grammar Cy = ( V ,T,
S
,P) consists of :

✓
,
the vocabulary : a non

-empty set of symbols .

TC V : the set of terminal£1s cannot be rewritten as othersigns .
V-T = N : the set of

s c- V : the start symbol non-terminal symbols
P : a setof productions
Fadi production is a " rewrite rule" of form LHS→RHS ;

LHS & RHS consist of symbols , and LHS contains
at least one non-terminal .



e-

g. , use the following grammar to generate some sentences :
✓ = { C

,
)
,
E }

1-= { C , 7 }
epsilon : empty string .S = E

P = { E → EE ,
E → (E)

,
E→%

1
. E ⇒ E =

" "

2. E ⇒ (E) ⇒ ((E))⇒ ( (e)) ⇒ (C ))
3 . E ⇒ EE ⇒ (E) E ⇒ (e) E⇒ C) (E)⇒ C) (e) = C)C)



Noam Chomsky created a classification system for formal grammars
in 1956 .

Chomsky hierarchy :

type 0 : unrestricted

type 1 :
context sensitive

type
2: context free

typos : regular



type0 (unrestricted) : no restrictions on grammar A in some context
✓

type 1 (context-sensitive) : productions have form ✗Ap→✗8ps ,
where

A is a non-terminal and ✗ ,Biare strings of terminals/non-terminals (✓non-empty) .
LHS has no context

type2(coatext -free) : productions have form A€✗ ,where A- is a
non- terminal and ✗ is a string of terminals/non

- terminals .

type3 (regular) : [right regular] : productions have form A→aB or A→a ;
[left regular] : productions have form A→ Ba or A→a , where A,B

are non- terminals , and a is a terminal symbol (orE)



Regular grammars , the simplest type , are often used

to specify the syntax of tokens for parsers
- regiarexpresins (regexes) are a way to spéaty
then grammars

virtually all programming languages are specified using
context-free grammars (CF4s)
- Backus - Naur Form (BWF) is often used to

spéatyactq



Regular Expressions
e.g. , fora floating point number lormoreof

[+] ?( [0-9]*1 . ) ? [0-9]+1 Preceding
elem

ÑpoyÑ optional oormore
preadingekm ofpreeediugeleen

+42.15
- 99.0 - uotelackof "memory

"

123 - cannot describe structures w/ matching/
+8 nested elements

i. (real world regexubirariesare more complex)



Backus- Naur Form

- list all productions in form

(non- terminal> : : = < term /non-term>+ ( / <term/nouterm>) *
e.g , English phrases

SENTENCE : : = NP UP

NP : : = ARTICLE ADS NOUN \ ARTICLE NOUN

Vp : : = VERB ADV \ VERB
ARTICLE : : = the \ a VERB : : = runs / jumps
ADS : : = red 1 big ADV : : = hungrily / happily
NOUN : : = car 1 computer



"

simple Imperative programming Language
" (IMP) +

,
×

arithmetic caps : E
: : = Integer / Var / E-+0¥

boolean exps : B
: := true / false / EZE

statements : s : : = skip 2
,
>
,
=
,

. . .

IVar:-sequencing
I S , ; Sz

1 if B then S ,
else £

1 while B do S



Evaluation relations :µ environ (vars)

anita
eats : <E

,
o > ye ✓
← resulting value (integer)

boolean eaps
: (B ,

o>µ, b
←

totem value

statements : ↳
,
• y µ
,

of
new environment

* we will overload ↓ whenit isdear by context which relation touse



Arithmetic Expression Rules ✗ is a var, and × :=v c- 0

LITERAL☒µi
it it≥

VARIABLE

ARITH↓✓iz
(e,④ ez , 07µV, ⊕ V2



Boolean Expression Rules

LITERAL

-2b¥
it be { true ,false}

REL↓e4&4Ñ
&,
~ ez ,E)↓b V1~V2



skip Rule

slap pi↓



AssignmentRule

ASSIGN

Theyupdate
var mapping

in our



Sequencing (Si ; Sa ) Rule

SEQ
Élan

⇐ ; Sa ,
0>↓ 0"



if- statement Rules

⇔¥¥¥÷¥¥
"⇔¥¥:÷÷¥↓



while - statement Rules

•""

E-t-a.i.ie?ii%95iIwHlLE-i-
(biÑHneGoÑ(whikbdoS,oD1↓

'

{while bolos ,o)1↓É
'



e.g. , proof trees for IMP

- prove that 3 ✗ a + 4 ✗ b = 39 in 0= {a:=5 ,
b := 6 }

- prove that while b dos

is equivalent to if b then (s ; wink b dos ) else skip



- prove that 3 ✗ a + 4 ✗ b = 39 in 0= {a : =5 ,
b := 6 }

÷:



- prove that wine b dos

is equivalent to if b then (s ; wink b dos ) else skip

- two statements S ,
and so are equivalent (si

~Sz) if
,

for any two environments
o
,
o
'

,

Csi
,
o>↓ r

' ⇐ o
'

[ bionditonal / iff
- let W be " while b do S

"

; want to show :

{ w
,
o>I o

' {if b then (s ; W) else skip ,0740
'



- prove thatwhileb①-w
is equivalent to if b then (s ;wÑ else skip

- consider WHILE-F and WHILE-T rules for w

i①

*⇔



- prove thatwhi1eb①-w
is equivalent to if b then (s ;wÑ else skip

- consider WHILE-F and WHILE-T rules for W

:① i.
②

""⇔



- prove thatwhi1eb⑦-w
is equivalent to if b then (s ;wÑ else skip

- consider WHILE-F and WHILE-T rules for w

i.②

⇔

*-+¥i;w⇔
☐



Back to Interpreters i.e. Bigskp semantics also gives
us a rigorous , concise way to

↓ = oral spiatythetxhauiorofau
interpreter/language !

0 = env

e.g. , dozens of pages of formal
semantics vs - hundreds of English
for specification of Java hang .


