Big-Step Semantics (+ introduction to Semantics)

"Mathematical" 2.

rigorous / precise
abstract / cymbolic representation
- amenable to proof methods
(e.g., proof by induction)

approaches to modeling semantics

Type of Operational Semantice

- Small-step - evaluation is modeled as a series of small steps

$$e \rightarrow e' \rightarrow e'' \rightarrow e''' \rightarrow \dots \rightarrow v$$

 $e \rightarrow *v : e$ evaluate to v after a scries of steps

How can we assert / prove that evaluations and computations proceed a certain way?

nued to be able to: 1. make assertions about individual syntactic dojcets z. connect these assertoins 3. uce these connections to create larger narratives (proofs!)

Inference Rules

form of a rule: [NAME] premise, ... premise [side conditions] conclusion where each premise ? the conclusion is aka "judgement" an assertion about a syntactic object e.g., assertions: n is odd $e \rightarrow e'$ eVV re: t - type of eist

Inference Rules

•

Proof Trees

-we can derive a proof tree for a griven assertion, where:
-the root of the proof tree (its final conclusion) is the
ascertion we wish to prove
- each subtree is a proof tree of the conclusion's premises
leaves
e.g.
$$P_1$$
 P_3 P_4 P_5
C. P_1 P_3 C_4
 C_1 P_2 C_3

- a trig-step semantic rule makes an assertion about what a syntactic object would evaluate to on an abstract machine - state of the abstract machine (aka "configuration") includes: - the syntactic object to evaluate (e.g., expressions, statemente, etc.) - the environment (e.g., variable -> value mappings)

cartestan product The Evaluation Relation: " Il, is a relation over : - syntaetic objects - environments 1.e., - possible results

we write (in "mixfix" form): <<, o> Vr

"Syntactic Objects" i.e., as found in a program written in some language. - what syntactic objects are possille/valid? - need a formal way of specifying a language - Grammal

a grammar
$$G = (V, T, S, P)$$
 considers of :
 V , the vocabulary: a non-ampty set of symbols.
 $T \subset V$: the set of terminal equilibries cannot be remitten as often symbols
 $S \in V$: the staf cymbol $V - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$: the set of
 $N - T = N$ is the set of the set of
 $N - T = N$ is the set of
 $N - T = N$ is the set of
 $N - T = N$ is the set of the set of the set of
 $N - T = N$ is the set of th

e.g., ner the following grammar to generate some sontences:

$$V = \{2(,), E\}$$

 $T = \{2(,)\}$
 $S = E$
 $P = \{E \Rightarrow EE, E \Rightarrow (E), E \Rightarrow E\}$

 $I. E \Rightarrow \varepsilon = ""$ $2. E \Rightarrow (E) \Rightarrow ((E)) \Rightarrow ((\varepsilon)) \Rightarrow (())$ $3. E \Rightarrow EE \Rightarrow (E)E \Rightarrow (\varepsilon)E \Rightarrow ()(E) \Rightarrow ()(\varepsilon) = ()()$

type (novectricited): no restrictions on grammar
A in some context
type (context-consistive): productions have form
$$\propto AB \rightarrow \propto BB$$
, where
A is a non-terminal and \propto , B, V are strings of terminals/non-terminals (V non-empty).
type 2 (context-free): productions have form $A \rightarrow \infty$, where A is a
non-terminal and \propto is a string of terminals/non-terminals.
type 3 (regular): [night regular]: productions have form $A \rightarrow aB$ or $A \rightarrow a$;
[left regular]: productions have form $A \rightarrow Ba$ or $A \rightarrow a$, where A , B
are non-terminals, and a is a terminal expended (or E)

Evaluation relations: exp environ (vars)
onth exps:
$$\langle E, \sigma \rangle \Downarrow_{E} \vee \langle rcsulling value (integer)$$

boolean exps: $\langle B, \sigma \rangle \Downarrow_{b} \land b$
new environment
statements: $\langle S, \sigma \rangle \Downarrow_{b} \sigma'$

Anthmetic Expression Rules

X is a var, and X := V E O

LITERAL Zi, o > Wi HiEZ

VARIABLE $\frac{\sigma(x) = v}{\langle x, \sigma \rangle | l v}$

ARITH $\frac{\langle e_1, \sigma \rangle \forall V_1 \langle e_2, \sigma \rangle \forall V_2}{\langle e_1 \oplus e_2, \sigma \rangle \forall V_1 \oplus V_2}$

Boolean Expression Bules

REL <u>Keinez</u>, JUVI Kez, JUVZ Keinez, JUV VINVZ

skip <skip, o>Vo

Assignment Rule

Le, J WeV ASSIGN - $\langle x := e, \sigma \rangle \forall \sigma (x := v)$ create new/vodate var mapping in en

Seprencing (S1; S2) Rule

 $SEQ \xrightarrow{\langle S_1, \sigma \rangle \Downarrow \sigma' \langle S_2, \sigma' \rangle \Downarrow \sigma''} \\ \xrightarrow{\langle S_1; S_2, \sigma \rangle \Downarrow \sigma''}$

1F-statement Rules

(b,0) Wbfalse (52, 5), 10' IF-F <if b then S, else S2, 0 >1/0'

- prove that
$$3 \times a + 4 \times b = 39$$
 in $\sigma = \{a := 5, b := b\}$
- prove that while b do s
is equivalent to if b then (s; while b dos) else skip

- prove that
$$3 \times a + 4 \times b = 39$$
 in $\sigma = \{a := 5, b := 6\}$

- prove that while b do s) is equivalent to if b then (s; while b dos) else skip

- consider while-F and while-T rules for W

- prove that while b do s is equivalent to if b then (s; while b dos) else skip

- consider while-F and while-T rules for W

 \Box

Bade to Interpreters

 $\overline{O} \equiv enV$

i.e., Big skep semantics also gives us a rigorous, cancisz way to specety the tchavior of an interpreter / language!

e.g., dozens of pages of formal semantics vs. mudreds of English for specification of Java Lang.