
Preliminaries
CS 440: Programming Languages
Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

- lee@iit.edu

- http://moss.cs.iit.edu

- Office: SB 226C

- Hours: Tue/Thu 10AM-12PM
	 (make appointments on homepage)

Michael Lee

mailto:lee@iit.edu
http://moss.cs.iit.edu

TA: Xincheng Yang
- xyang76@hawk.iit.edu

- Hours: TBA

mailto:xyang76@hawk.iit.edu

- Course overview

- Administrivia

- Grading

- Assessments

- Resources

Agenda

§ Programming Languages

Programming Languages …
- Theoretically all the same, yet practically very different!

- “Same” in a deep sense: Turing completeness
- Learning different languages and language features can

vastly expand your repertoire of programming techniques

- PLs are among our most important and fundamental tools!

PL features
- Must learn to precisely dissect and discuss PLs

- Terminology: imperative, functional, compilers,
interpreters, types, type checking, etc.

- Many terms are used imprecisely in conversation!

Reasoning about PLs
- What does a program (or PL construct) mean?

- Can we prove a program’s correctness?

- Many different ways of modeling and reasoning about
program semantics
- Goal: inject mathematical rigor into programming

Not just a consumer!
- You will modify and create your own PLs

- Understand how PLs tick

- Where is the overhead? Is it useful/necessary/worthwhile?

- Fun and useful skill!

We will …
1. Use a new language, Racket, to learn about different programming

language constructs and ideas.

2. Learn different methods of language specification, focusing on
semantics and verification.

3. Understand how programs are interpreted, compiled, represented, evaluated,
and optimized.

4. Implement our own programming language interpreters

Topics
- Racket

- Syntax

- Higher order functions

- Recursion

- Closures

- Metaprogramming

- Continuations

- Grammars and Languages

- Semantics

- Operational / Axiomatic

- Evaluation strategies

- Interpreters and Compilers

- Type inference and Unification

- Memory management

§ Administrivia

Prior knowledge
- Programming experience (CS 115/116/201)

- First-order / Predicate logic (CS 330)

- Rules of inference and logical proofs (CS 330)

- Formal languages and Grammars (CS 330)

- Analysis of algorithms (CS 331 / 430)

Course website: http://moss.cs.iit.edu/cs440

http://moss.cs.iit.edu/cs440

Blackboard: http://blackboard.iit.edu

http://blackboard.iit.edu

Discord: TA class discussion and Q/A
(invite on course website)

References (in addition to notes)
- Programming Languages: Application and Interpretation, by

Shriram Krishnamurthi

- Crafting Interpreters, by Robert Nystrom

- Compilers: Principles, Techniques, & Tools, 2nd edition, by
Aho, Lam, Sethi & Ullman, 2007.

Grading
- 50%	Assignments

- 25%	Midterm Exam

- 25%	Final Exam (Cumulative)

Assignments
- 5-7 total

- Some written, some machine problems (coding problems)

- Written submitted via Blackboard, MPs via GitHub

Late Policy
- 7-day late pool, distributed however you like across labs (a

day at a time)

- If you’re out of late days, late submissions will not be
accepted for a grade!

Exams
- Scores may be linearly scaled so that median/mean

(whichever lower) is 75%

- Midterm tentatively scheduled for March 8

	 A:	≥ 90%

	 B:	80-89%

	 C:	70-79%

	 D:	60-69%

	 E:	< 60%

For Friday
- Read chapter 2 of Crafting Interpreters: “A Map of the

Territory”

- Download and install DrRacket (https://racket-lang.org)

- Clone the class lecture repository from GitHub
(https://github.com/cs440lang/lectures/)

https://racket-lang.org
https://github.com/cs440lang/lectures/

