IMP Rules

The following are the big-step semantic rules of the simple imperative language (IMP) as described in class.

\[
\text{LITERAL } <i, \sigma> \Downarrow e_i \quad \text{when } i \in \mathbb{Z}
\]

\[
\text{VAR } <u, \sigma> \Downarrow e_v \quad \text{if } u := v \in \sigma
\]

\[
\text{ARITH } <e_1, \sigma> \Downarrow e_v \quad <e_2, \sigma> \Downarrow e_v' \quad <e_1 + e_2, \sigma> \Downarrow e_v + e_v'
\]

Figure 1: Arithmetic expressions

\[
\text{LITERAL } <b, \sigma> \Downarrow b \quad \text{if } b \in \{\text{true}, \text{false}\}
\]

\[
\text{VAR } <u, \sigma> \Downarrow e_v \quad \text{if } u := v \in \sigma
\]

\[
\text{REL } <e_1, \sigma> \Downarrow e_v \quad <e_2, \sigma> \Downarrow e_v' \quad <e_1 \sim e_2, \sigma> \Downarrow e_v \sim e_v'
\]

Figure 2: Boolean expressions

\[
\text{SKIP } <\text{skip}, \sigma> \Downarrow \sigma
\]

\[
\text{ASSIGN } <e, \sigma> \Downarrow e_v \quad <x := e, \sigma> \Downarrow [x := e]
\]

\[
\text{SEQ } <S_1, \sigma> \Downarrow \sigma' \quad <S_2, \sigma'> \Downarrow \sigma'' \quad <S_1; S_2, \sigma> \Downarrow \sigma''
\]

\[
\text{IF-T } <b, \sigma> \Downarrow_b \text{true } \quad <S_1, \sigma> \Downarrow \sigma' \quad <\text{if } b \text{ then } S_1 \text{ else } S_2, \sigma> \Downarrow \sigma'
\]

\[
\text{IF-F } <b, \sigma> \Downarrow_b \text{false } \quad <S_2, \sigma> \Downarrow \sigma' \quad <\text{if } \neg b \text{ then } S_1 \text{ else } S_2, \sigma> \Downarrow \sigma'
\]

\[
\text{WHILE-F } <b, \sigma> \Downarrow_b \text{false } \quad <S, \sigma> \Downarrow \sigma' \quad <\text{while } \neg b \text{ do } S, \sigma> \Downarrow \sigma'
\]

\[
\text{WHILE-T } <b, \sigma> \Downarrow_b \text{true } \quad <S, \sigma> \Downarrow \sigma' \quad <\text{while } b \text{ do } S, \sigma'> \Downarrow \sigma''
\]

Figure 3: Statements
Logistics and Submission

Please submit your solutions as a PDF (typed or neatly handwritten!) on Blackboard by the due date.

1 Extending the language

1. (5 points) We wish to add Boolean negation to IMP, via the $!$ operator. Write down inference rules to describe the big-step semantics of this operator.

2. (10 points) We wish to add for loops to IMP, which will have the form “for v in a_0 to a_1 do S”, which will run statement S with the variable v taking on values $a_0, a_0 + 1, ..., a_1$. E.g., “for x in 1 to 5 do S” will run S with x taking on values 1, 2, 3, 4, 5, in that order.

Write down inference rules to describe the big-step semantics of the for statement. Note that the loop variable is allowed to clash with pre-existing variables, and it may remain in the environment after the loop completes.

2 Proofs

3. (5 points) Draw a proof tree for the following assertion:

$$< t := a + b; a := b; b := t, \{ a := 5, b := 10 \} > \downarrow \{ t := 15, a := 10, b := 15 \}$$

4. (5 points) Draw a proof tree for the following assertion:

$$< \text{if } x > y \text{ then } m := x * 10 \text{ else } m := y * 10, \{ x := 10, y := 20 \} > \downarrow \{ x := 10, y := 20, m := 200 \}$$

5. Consider the program $P = \text{“for } x \text{ in } m \text{ to } n \text{ do } \text{sum} := \text{sum} + x\text{”}$ (which makes use of the for statement defined in the previous section). Note that m and n are not variables, but represent arbitrary integer constants.

(a) (5 points) Describe the environment σ' such that $< P, \sigma_0 > \downarrow \sigma'$, where σ_0 is an environment which maps all variables to 0. Hint: you may make use of the summation operator (Σ).

(b) (5 points) Write down a program Q using the while statement, which is semantically equivalent to P.

(c) (10 points) Prove that P and Q are equivalent when run in starting state σ_0.