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- Syllabus & Administrivia 

- Course overview (“Systems Programming”)

Agenda
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- “substantial” programming experience 

- data structures: concepts & implementation 

- basic run-time analysis (big O) 

- knowledge of  (any) assembly language 

- computer organization essentials

Prerequisites
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- computer organization essentials: 

- data representation (binary, two’s comp, 
f.p. inaccuracy, etc.) 

- von Neumann model 

- CPU, memory, I/O 

- stack usage / conventions
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1.Course website 
moss.cs.iit.edu/cs351 

- static information 

- lecture calendar, assignment writeups, 
slides, screencasts, links, etc.

Online resources

http://moss.cs.iit.edu/cs351
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2.Blackboard 

- only for grade reporting!

Online resources
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3.Vimeo channel: screencasts 

- vimeo.com/channels/cs351 

- walkthroughs & tutorials  
(check before starting labs!)

Online resources

http://vimeo.com/channels/cs351
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4.Piazza: discussion forum 

- all class-related questions 

- monitored by TAs 

- scales way better than e-mail 

- announcements, links to additional 
readings & resources

Online resources
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Textbooks
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Grading
- 50%	Labs 

- 25%	Midterm exam 

- 25%	Final exam 

- exam scores normalized to 70% 

- need ≥ 50% on both exams to pass
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Grade Scale
char letter_grade(float score) { 
    if (score >= 90.0)      return 'A'; 
    else if (score >= 80.0) return 'B'; 
    else if (score >= 70.0) return 'C'; 
    else if (score >= 60.0) return 'D'; 
    else return 'E'; 
}
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Labs
- fairly substantial machine problems 

- 100-1000 LOC 

- real-world application of  concepts covered in 
lecture & textbook 

- 1-3 weeks allotted for each
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§Course Overview
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“Systems Programming”
system |ˈsistəm| 
noun 
1	 a set of  connected things or parts 	
forming a complex whole

(New Oxford American Dictionary)
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“Systems Programming”
- Programming the operating system 

- What does that mean?
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OS vs. OS kernel
- OS kernel ≈ smallest subset of  OS code 

needed to bootstrap system and provide 
basic services to user programs 

- “smallest” is debatable
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How to “program” it?
- Require some API 

- Application Programming Interface 

- A collection of  (documented) functions 

- e.g., get/put/del for a hashtable



Computer 
ScienceScience

OS API
- a.k.a. “system call” interface 

- OS as a very low-level library 

- common purpose: provide services to user 
level programs 

- def: program in execution = process
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The Process
- A program in execution 

- Code + Data { global, local, dynamic } 

+OS kernel data 

- OS hides complexity of  machine from 
processes by creating abstractions
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http://xkcd.com/

“Abstraction”

http://xkcd.com
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Primary Abstractions
- Logical control flow 

- Exceptional (extra-process) control flow 

- Logical address space 

- Uniform I/O 

- Interprocess Communication



Computer 
ScienceScience

- … every program had to include its own 
implementation of  all the above! 

- Now, OS simplifies life for all of  us. 

- Only need to know how to use them, not 
how they’re implemented.

In the old days … 
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But!
- In this class we dig a bit deeper 

- What facilities are encapsulated by syscalls? 

- What limitations/restrictions do they have? 

- Why are they designed the way they are? 

- How do they work behind the scenes?
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But why should I care?
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- efficiency: know how to use tools optimally; 
reuse existing features and design/layer new 
ones appropriately 

- robustness: avoid bugs/failures & know how to 
diagnose and fix them
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the real reason: it’s fun to take things apart!
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goal: turn you into a hacker
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(or: make you a better hacker)
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The Jargon File, version 4.4.7

hacker |ˈhakər|
noun 
1	 A person who enjoys exploring the details of  programmable 	
systems and how to stretch their capabilities, as opposed to 	
most users, who prefer to learn only the minimum necessary.
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Our tools (& approach)
- C & Linux 

- C: low-level language 

- GNU Linux: open source kernel & tools 

- GNU gdb & gcc; debugger & compiler


