
Introduction
CS 351: Systems Programming
Michael Saelee <lee@iit.edu>

mailto:lee@iit.edu

Computer
ScienceScience

- lee@iit.edu

- http://moss.cs.iit.edu

- Office: SB 226C

Michael (Sae) Lee

mailto:lee@iit.edu
http://moss.cs.iit.edu

Computer
ScienceScience

- Syllabus & Administrivia

- Course overview (“Systems Programming”)

Agenda

Computer
ScienceScience

§Syllabus

Computer
ScienceScience

- “substantial” programming experience

- data structures: concepts & implementation

- basic run-time analysis (big O)

- knowledge of (any) assembly language

- computer organization essentials

Prerequisites

Computer
ScienceScience

- computer organization essentials:

- data representation (binary, two’s comp,
f.p. inaccuracy, etc.)

- von Neumann model

- CPU, memory, I/O

- stack usage / conventions

Computer
ScienceScience

1.Course website 
moss.cs.iit.edu/cs351

- static information

- lecture calendar, assignment writeups,
slides, screencasts, links, etc.

Online resources

http://moss.cs.iit.edu/cs351

Computer
ScienceScience

2.Blackboard

- only for grade reporting!

Online resources

Computer
ScienceScience

3.Vimeo channel: screencasts

- vimeo.com/channels/cs351

- walkthroughs & tutorials  
(check before starting labs!)

Online resources

http://vimeo.com/channels/cs351

Computer
ScienceScience

4.Piazza: discussion forum

- all class-related questions

- monitored by TAs

- scales way better than e-mail

- announcements, links to additional
readings & resources

Online resources

Computer
ScienceScience

Textbooks

Computer
ScienceScience

Grading
- 50%	Labs

- 25%	Midterm exam

- 25%	Final exam

- exam scores normalized to 70%

- need ≥ 50% on both exams to pass

Computer
ScienceScience

Grade Scale
char letter_grade(float score) {
 if (score >= 90.0) return 'A';
 else if (score >= 80.0) return 'B';
 else if (score >= 70.0) return 'C';
 else if (score >= 60.0) return 'D';
 else return 'E';
}

Computer
ScienceScience

Labs
- fairly substantial machine problems

- 100-1000 LOC

- real-world application of concepts covered in
lecture & textbook

- 1-3 weeks allotted for each

Computer
ScienceScience

§Course Overview

Computer
ScienceScience

“Systems Programming”
system |ˈsistəm|
noun
1	 a set of connected things or parts 	
forming a complex whole

(New Oxford American Dictionary)

Computer
ScienceScience

“Systems Programming”
- Programming the operating system

- What does that mean?

Computer
ScienceScience

OS vs. OS kernel
- OS kernel ≈ smallest subset of OS code

needed to bootstrap system and provide
basic services to user programs

- “smallest” is debatable

Computer
ScienceScience

How to “program” it?
- Require some API

- Application Programming Interface

- A collection of (documented) functions

- e.g., get/put/del for a hashtable

Computer
ScienceScience

OS API
- a.k.a. “system call” interface

- OS as a very low-level library

- common purpose: provide services to user
level programs

- def: program in execution = process

Computer
ScienceScience

The Process
- A program in execution

- Code + Data { global, local, dynamic }

+OS kernel data

- OS hides complexity of machine from
processes by creating abstractions

Computer
ScienceScience

http://xkcd.com/

“Abstraction”

http://xkcd.com

Computer
ScienceScience

Primary Abstractions
- Logical control flow

- Exceptional (extra-process) control flow

- Logical address space

- Uniform I/O

- Interprocess Communication

Computer
ScienceScience

- … every program had to include its own
implementation of all the above!

- Now, OS simplifies life for all of us.

- Only need to know how to use them, not
how they’re implemented.

In the old days …

Computer
ScienceScience

But!
- In this class we dig a bit deeper

- What facilities are encapsulated by syscalls?

- What limitations/restrictions do they have?

- Why are they designed the way they are?

- How do they work behind the scenes?

Computer
ScienceScience

But why should I care?

Computer
ScienceScience

- efficiency: know how to use tools optimally;
reuse existing features and design/layer new
ones appropriately

- robustness: avoid bugs/failures & know how to
diagnose and fix them

Computer
ScienceScience

the real reason: it’s fun to take things apart!

Computer
ScienceScience

goal: turn you into a hacker

Computer
ScienceScience

(or: make you a better hacker)

Computer
ScienceScience

The Jargon File, version 4.4.7

hacker |ˈhakər|
noun
1	 A person who enjoys exploring the details of programmable 	
systems and how to stretch their capabilities, as opposed to 	
most users, who prefer to learn only the minimum necessary.

Computer
ScienceScience

Our tools (& approach)
- C & Linux

- C: low-level language

- GNU Linux: open source kernel & tools

- GNU gdb & gcc; debugger & compiler

