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registers

cache (SRAM)

main memory (DRAM)

local hard disk drive (HDD/SSD)

remote storage (networked drive / cloud)

next: DRAM ⇔ HDD, SSD, etc. 
i.e., memory as a “cache” for disk
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main goals: 

1. maximize memory throughput 
2. maximize memory utilization 

3. provide address space consistency  
& memory protection to processes
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throughput = # bytes per second 

- depends on access latencies (DRAM, 
HDD) and “hit rate”
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utilization = fraction of  allocated memory 
that contains “user” data (aka payload) 

- vs. metadata and other overhead 
required for memory management
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address space consistency → provide a uniform 
“view” of  memory to each process
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address space consistency → provide a uniform 
“view” of  memory to each process
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memory protection → prevent processes from 
directly accessing each other’s address space
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memory protection → prevent processes from 
directly accessing each other’s address space
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i.e., every process should be provided with 
a managed, virtualized address space
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“memory addresses”: what are they, really?
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“physical” address: (byte) index into DRAM

data

CPU

address: N

Main Memory

N

(note: cache not shown)
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int glob = 0xDEADBEEE; 

main() { 
    fork(); 
    glob += 1; 
}

(gdb) set detach-on-fork off 
(gdb) break main 
Breakpoint 1 at 0x400508: file memtest.c, line 7. 
(gdb) run 
Breakpoint 1, main () at memtest.c:7 
7           fork(); 
(gdb) next 
[New process 7450] 
8           glob += 1; 
(gdb) print &glob 
$1 = (int *) 0x6008d4 
(gdb) next 
9       } 
(gdb) print /x glob 
$2 = 0xdeadbeef 
(gdb) inferior 2 
[Switching to inferior 2 [process 7450] 
#0  0x000000310acac49d in __libc_fork () 
131       pid = ARCH_FORK (); 
(gdb) finish 
Run till exit from #0  in __libc_fork () 
8           glob += 1; 
(gdb) print /x glob 
$4 = 0xdeadbeee 
(gdb) print &glob 
$5 = (int *) 0x6008d4

parent

child
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data

CPU

address: N

Main Memory

N

instructions executed by the CPU do not 
refer directly to physical addresses!
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processes reference virtual addresses, 

the CPU relays virtual address requests to 
the memory management unit (MMU), 

which are translated to physical addresses
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disk  
address

CPU

Main Memory

“swap” space

MMU

address 
translation 

unit

physical  
address

virtual address

(note: cache not shown)
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essential problem: translate request for a 	
virtual address → physical address 

… this must be FAST, as every memory 
access from the CPU must be translated
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both hardware/software are involved: 

- MMU (hw) handles simple and fast 
operations (e.g., table lookups) 

- Kernel (sw) handles complex tasks  
(e.g., eviction policy)
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§Virtual Memory 
Implementations
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keep in mind goals: 

1. maximize memory throughput 
2. maximize memory utilization 

3. provide address space consistency  
& memory protection to processes
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P0

0

Main Memory

0

1. simple relocation

B

N

N+B
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data

CPU

VA: N PA: N+B

MMU

relocation reg.

Main Memory

B

N

1. simple relocation

- per-process relocation address is loaded  
by kernel on every context switch

B
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data

CPU

VA: N PA: N+B

MMU

relocation reg.

Main Memory

B

N

1. simple relocation

- problem: processes may easily overextend 
their bounds and trample on each other

B
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data

CPU

VA: N PA: N+B

Main Memory

B
N

1. simple relocation

- incorporate a limit register to provide 
memory protection

MMU

relocation reg.
B

limit reg.
L

assert (0 ≤ N ≤ L)

B+L
process 
sandbox
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data

CPU

VA: N PA: N+B

Main Memory

B
N

1. simple relocation

- assertion failure triggers a fault, which 
summons kernel (which signals process)

MMU

relocation reg.
B

limit reg.
L

assert (0 ≤ N ≤ L)

B+L
process 
sandbox
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pros: 

- simple & fast! 

- provides protection
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but: 	available memory for mapping 	
depends on value of  base address 

i.e., address spaces are not consistent!

B

B

vs.

Main MemoryMain MemoryVirtual Memory
stack

code

data

heap

stack

code

data

heap

Virtual Memory
stack

code

data

heap

code

data
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also: 	all of  a process below the address limit 	
must be loaded in memory 

i.e., memory may be vastly under-utilized

Main Memory

B

possibly unused!

virtual 
address 
space

0

L stack

code

stack

code
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2. segmentation 

- partition virtual address space into 
multiple logical segments 

- individually map them onto physical 
memory with relocation registers
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MMU

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table

Main Memory

B3

B3+L3

B2

B2+L2

B1

B1+L1

B0

B0+L0

Seg #0: Code
0

0

0

0
Seg #1: Data

Seg #3: Stack

Seg #2: Heap

Segmented Virtual 
Address Space

virtual address has form seg#:offset
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MMU

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table

VA: seg#:offset

data

assert (offset ≤ L2)

⊕
CPU

PA: offset + B2

Main Memory

B3

B3+L3

B2

B2+L2

B1

B1+L1

B0

B0+L0



Computer 
ScienceScience

- implemented as MMU registers 

- part of  kernel-maintained, per-process 
metadata (aka “process control block”) 

- re-populated on each context switch

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table
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pros: 

- still very fast 
- translation = register access & addition 

- memory protection via limits 

- segmented addresses improve consistency



Computer 
ScienceScience

possibly unused!

Main Memory

B

virtual 
address 
space

0

L stack

code

stack

code

simple 
relocation:

segmentation:
better!

Main Memory

0

stack

code

0 stack

code

virtual 
address 
space
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0

0

stack

code

virtual 
address 
space 2x

x
x

Main Memory

0

stack

code

0 stack

code

virtual 
address 
space

- variable segment sizes → memory fragmentation 

- fragmentation potentially lowers utilization 
- can fix through compaction, but expensive!
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3. paging 

- partition virtual and physical address 
spaces into uniformly sized pages 

- virtual pages map onto physical pages
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stack

heap

data

code

physical memory
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stack

heap

data

code

- minimum mapping granularity = page 

- not all of  a given segment need be mapped

physical memory
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modified mapping problem: 

- a virtual address is broken down into 
virtual page number & page offset 

- determine which physical page (if  any) 
a given virtual page is loaded into 

- if  physical page is found, use page 
offset to access data
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VA:

PA:

Given page size = 2p bytes
 p

 p

 virtual page offset virtual page number

 physical page offset physical page number
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 physical page offset physical page number

address 
translation

VA:

PA:

 virtual page offset virtual page number
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 physical page offset physical page number

VA:

PA:

 virtual page offset virtual page number

translation structure: page table
valid PPN

n

2n entriesindex

if  invalid, page 
is not mapped
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page table entries (PTEs) typically contain 
additional metadata, e.g.: 

- dirty (modified) bit 

- access bits (shared or kernel-owned 
pages may be read-only or inaccessible)
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e.g.,	32-bit virtual address, 
	 4KB (212) page size, 
	 4-byte PTE size; 

- size of  page table?
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e.g.,	32-bit virtual address, 
	 4KB (212) pages, 
	 4-byte PTEs; 

- # pages = 232 ÷ 212 =  220 =1M 

- page table size = 1M × 4 bytes = 4MB
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4MB is much too large to fit in the MMU 
— insufficient registers and SRAM! 

Page table resides in main memory
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The translation process (aka page table walk) 
is performed by hardware (MMU). 

The kernel must initially populate, then 
continue to manage a process’s page table 

The kernel also populates a page table base 
register on context switches
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➊ VA: N

translation: hit

CPU

➌ PA: N'

Main 
Memory

Page 
Table

➋	page table  
	 walk

➍ data

Address 
Translator  

(part of MMU)
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➐ VA: N 
	 (retry)

Main 
Memory

Disk 
(swap space)

➎	data transfer➊ VA: N

translation: miss

CPU

➒ PA: N'

Page 
Table

Address 
Translator  

(part of MMU)

➋	page table  
	 walk

➓ data

➌ page fault kernel

➍	transfer control to kernel

➑

➏	PTE  
	 update
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kernel decides where to place page, and 
what to evict (if  memory is full) 

- e.g., using LRU replacement policy
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this system enables on-demand paging 
i.e., an active process need only be partly in 
memory (load rest from disk dynamically)
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but if  working set (of  active processes) 
exceeds available memory, we may have 
swap thrashing
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integration with caches?
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Q:	do caches use physical or virtual 	
addresses for lookups?
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CPU
Process A Process B

Virtual Address 
Space

Virtual Address 
Space

0

M

L

0

M

N

X

Z

Cache

Address Data
L X
M Y
N Z

Virtual address based Cache

ambiguous!? ?
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CPU
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Process A Process B
Virtual Address 

Space
Virtual Address 

Space
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Q:	do caches use physical or virtual 	
addresses for lookups? 

A:	caches typically use physical addresses
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(miss)PAVA

Main Memory

process 
page table

CPU

Cache

page table walk

MMU 
(address 

translation 
unit)

(hit)
data

(update)

%*@$&#!!!
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saved by hardware: 

the Translation Lookaside Buffer (TLB) — a 
cache used solely for VPN→PPN lookups
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MMU
Main Memory

process 
page table

CPU

Cache

VA PA (miss)

TLB 
(VPN→PPN 

cache)

address 
translation 

unitonly if   
TLB miss!

page table walk

(hit)
data

(update)

TLB + Page table
(exercise for reader: revise earlier translation diagrams!)
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virtual page number (VPN) page offset

physical address

n-1 p p-1 0

valid tag physical page number (PPN)

virtual address

=

TLB Hit

valid tag data

=

Cache Hit
Data

byte offset
Cache

TLB
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TLB mappings are process specific — 
requires flush & reload on context switch 

- some architectures store PID (aka 
“virtual space” ID) in TLB
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Familiar caching problem: 

- TLB caches a few thousand mappings 

- vs. millions of  virtual pages per process!
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we can improve TLB hit rate by reducing 
the number of  pages … 

by increasing the size of  each page
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compute # pages for 32-bit memory for: 

- 1KB, 512KB, 4MB pages 

- 232 ÷ 210	= 222	 = 4M pages 

- 232 ÷ 219	= 213	 = 8K pages 

- 232 ÷ 222	= 210	 = 1K pages
(not bad!)



Computer 
ScienceScience

Process A Process B
Virtual Memory Virtual Memory

Physical Memory

lots of  wasted space!
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Process A Process B
Virtual Memory Virtual Memory

Physical Memory
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increasing page size results in increased 
internal fragmentation and lower utilization



Computer 
ScienceScience

i.e., TLB effectiveness needs to be 
balanced against memory utilization
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so what about 64-bit systems? 

264 = 16 Exabyte address space 

	 ≈ 4 billion x 4GB
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most modern implementations support a 
max of  248 (256TB) addressable space
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page table size (assuming 4K page size)? 

- # pages	 = 248 ÷ 212 = 236 

- PTE size	= 8 bytes (64 bits) 

- PT size 	 = 236 x 8 = 239 bytes
= 512GB
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512GB

(just for the virtual memory mapping structure)

(and we need one per process)
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(these things aren’t going to fit in memory)
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instead, use multi-level page tables: 

- split an address translation into two  
(or more) separate table lookups 

- unused parts of  the table don’t need to 
be in memory!
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7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0

“toy” memory system 
- 8 bit addresses 
- 32-byte pages

page offsetVPN

(unmapped)
PPN

(unmapped)
PPN

(unmapped)
(unmapped)
(unmapped)
(unmapped)

Page Table
7
6
5
4
3
2
1
0

all 8 PTEs 
must be in 
memory at 
all times
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7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
page offset

1
0

(unmapped)
PPN

(unmapped)
PPN

3
2
1
0

(unmapped)
(unmapped)
(unmapped)
(unmapped)

3
2
1
0

page “directory”

“toy” memory system 
- 8 bit addresses 
- 32-byte pages

all unmapped;  
don’t need in memory!
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7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
page offset

1
0

(unmapped)
PPN

(unmapped)
PPN

3
2
1
0

“toy” memory system 
- 8 bit addresses 
- 32-byte pages

∅
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Intel Architecture Memory Management 
http://www.intel.com/products/processor/manuals/ 
(Software Developer’s Manual Volume 3A) 

http://www.intel.com/products/processor/manuals/
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segment, the segment type, and the location of the first byte of the segment in the 
linear address space (called the base address of the segment). The offset part of the 
logical address is added to the base address for the segment to locate a byte within 
the segment. The base address plus the offset thus forms a linear address in the 
processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped directly 
into the physical address space of processor. The physical address space is defined as 
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space 
much larger than it is economically feasible to contain all at once in physical memory, 
some method of “virtualizing” the linear address space is needed. This virtualization 
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space 
is simulated with a small amount of physical memory (RAM and ROM) and some disk 

Figure 3-1.  Segmentation and Paging
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Table (GDT)

Linear Address
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Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.
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Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

Address

Page
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Segmented → Linear Address

Vol. 3A 3-7
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If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear 
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address 
translation is used to translate the linear address into a physical address. 

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear 
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear 
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy 
32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment, 
but instead points to the segment descriptor that defines the segment. A segment selector contains the following 
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies 
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base 
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag 
selects the current LDT.

Figure 3-5.  Logical Address to Linear Address Translation

Figure 3-6.  Segment Selector

Offset (Effective Address)
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Base Address

Descriptor Table

 Segment
Descriptor

31(63)
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015
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   1 = LDT
Requested Privilege Level (RPL)

RPL
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Segment registers

3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to 
3, with 0 being the most privileged level. See Section 5.5, “Privilege Levels”, for a description of the 
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege 
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that 
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor 
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null 
selector. It does, however, generate an exception when a segment register holding a null selector is used to access 
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null 
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are 
usually assigned or modified by link editors or linking loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides registers for holding up to 6 
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference 
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS), 
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor 
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data 
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the 
segment registers. So, although a system can define thousands of segments, only 6 can be available for immediate 
use. Other segments can be made available by loading their segment selectors into these registers during program 
execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a 
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment 
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and 
access control information from the segment descriptor pointed to by the segment selector. The information cached 
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus 
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors 
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when 
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might 
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions 
explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER 
and SYSEXIT instructions, and the IRET, INT n, INTO, INT3, and INT1 instructions. These instructions change 

Figure 3-7.  Segment Registers

CS
SS
DS
ES
FS
GS

Segment Selector Base Address, Limit, Access Information
Visible Part Hidden Part



Computer 
ScienceScience

Segment descriptor
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The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form 
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the 
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte 
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is 
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment 
Descriptor Types”, for more information about segment types. For expand-up segments, the offset 
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit 
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse 
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on 
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection 
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at 
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for 
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The 
processor puts together the three base address fields to form a single 32-bit value. Segment base 
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required, 
this alignment allows programs to maximize performance by aligning code and data on 16-byte 
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the 
segment and the direction of growth. The interpretation of this field depends on whether the 
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The 
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See 
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is 
used to specify code and data-segment types. 

Figure 3-8.  Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

TypeSL 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)
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Access checks can be used to protect not only against referencing an address outside 
the limit of a segment, but also against performing disallowed operations in certain 
segments. For example, since code segments are designated as read-only segments, 
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. 
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on 
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit 
protected mode semantics.

Figure 3-4.  Multi-Segment Model
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FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the address space because the 
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits 
are set to include only the range of addresses for which physical memory actually 
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on 
any attempt to access nonexistent memory. This model provides a minimum level of 
hardware protection against some kinds of program bugs.

Figure 3-2.  Flat Model

Figure 3-3.  Protected Flat Model
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Table 4-1 illustrates the key differences between the three paging modes.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is 
used only in legacy protected mode. Because legacy protected mode cannot produce 
linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit 
linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e 
mode. (In fact, it is the use of IA-32e paging that defines IA-32e mode.) IA-32e 
mode has two sub-modes:

• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging 
treats bits 47:32 of such an address as all 0.

• 64-bit mode. While this mode produces 64-bit linear addresses, the processor 
ensures that bits 63:47 of such an address are identical.1 IA-32e paging does not 
use bits 63:48 of such addresses.

Table 4-1.  Properties of Different Paging Modes

Paging
Mode CR0.PG CR4.PAE LME in

IA32_EFER

Linear-
Address
Width

Physical-
Address
Width1

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

Page
Size(s)

Supports
Execute-
Disable?

None 0 N/A N/A 32 32 N/A No

32-bit 1 0 02

2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

32 Up to 403

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and 
only if the PSE-36 mechanism is supported; see Section 4.1.4 and Section 4.3.

4-KByte
4-MByte4

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

No

PAE 1 1 0 32 Up to 52
4-KByte
2-MByte

Yes5

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

IA-32e 1 1 2 48 Up to 52
4-KByte
2-MByte
1-GByte6

6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.

Yes5

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode pro-
duces a general-protection exception (#GP(0)); the processor does not attempt to translate non-
canonical linear addresses using IA-32e paging.

Paging modes
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Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries 
with 32-bit paging. For the paging structure entries, it identifies separately the 
format of entries that map pages, those that reference other paging structures, and 
those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are 
highlighted because they determine how such an entry is used..

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 

32-bit paging.
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2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller, 
the number of bits reserved in positions 20:13 of a PDE mapping a 4-MByte will change.
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Figure 4-4.  Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
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— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see 

Table 4-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, the entry is used neither to 
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose 
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault 
exception (see Section 4.7).

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 4.6.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-5.  Linear-Address Translation to a 4-KByte Page using PAE Paging
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Figure 4-8.  Linear-Address Translation to a 4-KByte Page using IA-32e Paging
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The following items describe the IA-32e paging process in more detail as well has 
how the page size is determined.

• A 4-KByte naturally aligned PML4 table is located at the physical address 
specified in bits 51:12 of CR3 (see Table 4-12). A PML4 table comprises 512 64-
bit entries (PML4Es). A PML4E is selected using the physical address defined as 
follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.

Because a PML4E is identified using bits 47:39 of the linear address, it controls 
access to a 512-GByte region of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the 
physical address specified in bits 51:12 of the PML4E (see Table 4-14). A page-
directory-pointer table comprises 512 64-bit entries (PDPTEs). A PDPTE is 
selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

Figure 4-10.  Linear-Address Translation to a 1-GByte Page using IA-32e Paging
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