Full Name:

CS 351 Spring 2015

Midterm Exam

March 25", 2015

Instructions:

e Write your full name on the front, and make sure that your exam is not missing any sheets.
e This exam is closed-book, closed-notes. Calculators are neither needed nor permitted.

e If you make a mess, clearly indicate your final answer.

1 (/20)
2 (/12) :
(/8) :
4 (/8)
5 (/8) :

TOTAL (/56) :

w

Page 1 of 8



Problem 1. (20 points):

Circle the letter next to the single best answer for each question.

1. What accurately describes the C type declaration int *arr[10]7

array of 10 pointers to integers

a.
b. pointer to an array of 10 integers

o

array of 10 pointers to functions returning integers

d. pointer to a function that takes an array and returns an integer

2. Given that p is declared to be of type (struct foo *), which of the following is equivalent
to the statement p++;?

a.p = *x(p + 1);

b. p = (struct foo *) ((char *)p + 1);

c. p = (struct foo *)((char *)p + sizeof(p));

d. p = (struct foo *)((char *)p + sizeof(struct foo));

3. Which of the following correctly frees the space allocated by the statement
void *p = malloc(N * sizeof (struct foo))?
a. free(p);
b. free(xp)

free(p[N]);

d. for (i=0; i<N; i++) free(p + 1i);

o

4. Which of the following pieces of information is not maintained by the kernel on behalf of
each running process?
a. its process ID
b. its group ID

the set of blocked signals

o

d. the previous function’s return address

5. Which of the following is an example of a synchronous exception?

a. a system call
b. a function call
c. a keyboard interrupt (e.g., ~C)

d. someone tripping over the power cord

Page 2 of 8



6. Which of the following types of exceptions is usually triggered intentionally?

a.
b.
c.

d.

a trap
a fault
an abort

a floating point exception

7. Which of the following is not inherited by a child process across a fork (from its parent)?

a.
b.

o

d.

its group ID
its signal handlers
the set of pending signals

the currently running program

8. Which of the following may not be retained by a process across a (successful) call to exec?

a.
b.

o

d.

its group ID

its signal handlers

the set of blocked signals
the set of pending signals

9. Under which of the following conditions will the kernel take over the responsibility of reaping
(i.e. adopt) a process?

10.

a.
b.

o

d.

when it terminates due to a signal
when its parent process has blocked the SIGCHLD signal
when its parent process has already terminated

when its children have all terminated

Which of the following actions is likely to be taken by the shell program in a child process
after fork-ing, but before exec-ing?

a.
b.

& o

blocking the SIGCHLD signal

registering a handler for the SIGCONT signal

setting the group ID equal to the process ID
adding the process ID to the array of job structures

Page 3 of 8



Problem 2. (12 points):

Consider the following structure definitions:

typedef struct queue queue_t;
typedef struct node node_t;

struct node {
node_t *next;
void *val;

};

struct queue {
node_t *head;
node_t *tail;

};

For this problem you are to complete a handful of methods that implement a queue data structure.
The following program demonstrates their use:

queue_t *q = make_queue();

enqueue(q, "supercali");
printf ("%s", dequeue(q));

enqueue(q, "fragi");
enqueue(q, "listic");
enqueue(q, "expiali');
enqueue(q, "docious");
char *c = NULL;

while ((c = dequeue(q))) {

printf ("%s", c);
}

free(q);
When run, the program’s output is as follows:
supercalifragilisticexpialidocious

Note that there are no memory leaks. Complete the implementations of make_queue, enqueue and
dequeue on the following page.

Page 4 of 8



/* allocates and returns an empty queue */
queue_t *make_queue () {

queue_t *q = malloc(sizeof(_______________ ));
q->head = gq->tail = NULL;
return q;

/* add val at the tail of the queue q */
void enqueue (queue_t *q, void *val) {
if (gq->head == NULL) {

malloc(sizeof (

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
=
[
—
(e

malloc(sizeof (

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
=
[
=
=

q->tail->val = val;

/* removes and returns the item at the head of the queue q,
* or NULL if q is empty. */
void *dequeue (queue_t *q) {
if (g->head == NULL) {
return NULL;
}

void *val

node_t *p = _______________ >

q—>head =
free(p);

if (gq->head == NULL) {
q->tail = NULL;
}

return val;

Page 5 of 8



Problem 3. (8 points):

For each of the following programs:

1. Sketch the corresponding process tree next to it

2. Circle all of the possible outputs beneath it

Assume that all printf statements are immediately flushed. Also, recall that when wait is called
by a process with no children, it returns immediately (with -1).

int main() {
int i;
for (i=0; i<2; i++) {
fork();
printf ("%d", 1i);
}
printf("2");

a. 0011221122 b. 0121201212 ¢. 0212021112 d. 0011112222 e. 0111012222

int main() {
printf("1");
fork();
printf ("2");
wait (NULL) ;
if (fork() == 0)
printf("3");
else
printf ("4");
return O;

a. 1234243 b. 1234342 c. 1224343 d. 1223344 e. 1243234

Page 6 of 8



Problem 4. (8 points):

For each of the following programs, circle its possible output(s) next to it. Sketching a process tree
is not necessary, though you may do so if it helps you reason about things. Assume that all printf
statements are immediately flushed. Recall that pause blocks a process until after signal arrives.

int glob 1;
int done 0;

void handler(int sig) {
glob = glob * 2;
printf ("3\n");

a. 3124
done = 1;
b b. 3123
int main() { c. 1322
signal (SIGCHLD, handler);
if (fork() == 0) { d. 1324
exit (0);
} e. 1232
int val = glob;
printf ("1\n"); f. 1234
glob = val + 1;
printf ("2\n");
while (!done) ; /* busy loop */
printf ("%d\n", glob);
}
void handler(int sig) {
int stat;
wait (&stat);
if (WIFEXITED(stat))
printf("%d", WEXITSTATUS(stat));
} a. 1212121212
int main() { b. 1111122222
int i;
pid_t pids[5]; c. 1
signal (SIGCHLD, handler);
for (i=0; i<5; i++) d. 12
if ((pids[i] = fork()) == 0) {
printf("1"); e. 11111
while (1) ; /* inf loop */
} f. no output

for (i=0; i<b5; i++)
kill(pids[i], SIGKILL);

sleep(1);

return 2;

Page 7 of 8



Problem 5. (8 points):

Having just added code to block signals before forking a child process and unblock them after adding
the process to the job queue, a student is surprised to discover a mysterious race condition in his
shell implementation that causes it to occasionally segfault when running foreground processes.
Below are relevant function declarations and bodies.

/* add a job to the job list */

int addjob(struct job_t *jobs, pid_t pid, int state, char *cmdline);
/* find a job (by PID) on the job list; return NULL if not found */
struct job_t *getjobpid(struct job_t *jobs, pid_t pid);

/* delete a job whose PID=pid from the job list */

int deletejob(struct job_t *jobs, pid_t pid);

void sigchld_handler(int sig) {
pid_t pid;
while ((pid = waitpid(-1, &status, WNOHANG|WUNTRACED)) > 0)
if (WIFEXITED(status))
deletejob(jobs, pid);
}

void eval(char *cmdline) {
/* var declarations & cmdline parsing not shown */
sigemptyset (&mask) ;
sigaddset (&mask, SIGCHLD);
sigprocmask (SIG_BLOCK, &mask, NULL);
if ((pid = fork()) == 0) {
sigprocmask (SIG_UNBLOCK, &mask, NULL);
execvp(argv[0], argv);
}
addjob(jobs, pid, (bg == 1 ? BG : FG), cmdline);
sigprocmask (SIG_UNBLOCK, &mask, NULL);
if (!bg)
waitfg(pid);

void waitfg(pid_t pid) {
struct job_t *j = getjobpid(jobs, pid);
while (j->pid == pid && j->state == FG)
sleep(1);

Explain how, precisely, the race condition plays out in order to cause the segfault, and explain how
you would go about fixing it.

Page 8 of 8



