
Preliminaries
CS 340: Programming Paradigms and Patterns
Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

- Administrivia

- Websites, References, Grading, etc.

- What is “PPP”?

- Why Haskell?

- Why take CS 340?

Agenda

§ Administrivia

- Email: lee@iit.edu

- Homepage: http://moss.cs.iit.edu

- Office: SB 226C

- Hours: Tue & Thu 10AM-12PM over Zoom
	 (by appointment only!)

Michael Lee

mailto:lee@iit.edu
http://moss.cs.iit.edu

- I assume you are …

- fluent in some programming language

- familiar with procedural & OO programming

- comfortable with development processes:

- compilation, debugging, testing

Prerequisites

Course website: http://moss.cs.iit.edu/cs340

http://moss.cs.iit.edu/cs340

Blackboard: http://blackboard.iit.edu

http://blackboard.iit.edu

Discord: TA office hours, class discussion, and Q/A
(invite on course website)

Video playlist (on YouTube)

Primary text: “Learn You a Haskell for Great Good!”

References
- Miran Lipovača, Learn You a Haskell for Great Good!
- Graham Hutton, Programming in Haskell
- O’Sullivan, Stewart, Goerzen, Real World Haskell

Grading
- 50%	Machine Problems

- 4-6 Haskell programming assignments

- 25%	Midterm Exam

- 25%	Final Exam (Cumulative)

Late Policy
- 7-day late pool, distributed however you like across labs (a

day at a time)

- If you’re out of late days, late submissions will not be
accepted!

Exams
- Midterm tentatively scheduled for March 8

- Scores may be linearly scaled so that median/mean
(whichever lower) is 75%

	 A:	≥ 90%

	 B:	80-89%

	 C:	70-79%

	 D:	60-69%

	 E:	< 60%

§ “Programming Paradigms
and Patterns”

Paradigm
- Model for how a program (in some language) is organized,

expressed, or executed

- A given paradigm typically imposes some syntactic/semantic
conventions or limits on programs

- E.g., procedural, imperative, object-oriented, functional

- We will be focusing on the functional paradigm

Why Functional?
- Substantively different from the imperative paradigm, which

is likely your “native” model

- E.g., no state mutations → referential transparency

- Arguably easier to reason about rigorously in some contexts
(and many other purported benefits)

- You’ll read a paper on this for Friday!

Pattern
- A reusable template for solving a common class of problem(s)

- May be paradigm/language specific, and typically as abstract
as possible to encourage reuse

E.g., Imperative & OOP patterns
- Loops/Iterators for array, list, or collection traversal

- Encapsulation with setter/getter methods

- Singleton & Factory patterns

- Observer pattern, aka Publish/Subscribe

“Gang of Four” book

Our focus: Functional patterns
- Structural and Generative recursion

- Higher order functions

- Functors and Monads

- Monoids and Foldables

- Etc.

Haskell
- Our functional language of choice: Haskell

- Pure: purely functional; side-effects are isolated

- Strongly typed: types are checked/enforced at compile time

- Lazy: expressions aren’t evaluated until absolutely necessary

- Likely very different from another language you’ve used!

Why Haskell?
- It’s fun, surprising, and powerful!

- Learning a (different) new language gives you an entirely new
way to think about and tackle problems

- Valuable, even if you don’t actually code the solution up in
said language

A Taste of Haskell
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

primes = filterPrime [2..]
 where filterPrime (p:xs) =
 p : filterPrime [x | x <- xs, x `mod` p /= 0]

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater)
 where lesser = filter (< p) xs
 greater = filter (>= p) xs

Why take CS 340?
- You love to program

- You love programming languages
- You are frustrated with languages you currently know

- You want to learn new ways to reason about programming

- Which will help in later classes and your career

Topics (not exhaustive)
- Functional programming

- Haskell Types and Typeclasses (like OOP on steroids)

- Higher Order Functions

- Functors and Monads

- Automated Property-Based Testing

- Concurrency and Software Transactional Memory

For Friday
- Read Hughes’s “Why Functional Programming Matters”

(at least sections 1 & 2, if you can get further, great!)

- Start reading “Learn You a Haskell”

