CS 340 Spring 2023
Midterm Exam

Question Booklet

Instructions:

e This exam is closed-book, closed-notes. Electronic devices of any kind are not permitted.

e You will write all your responses in the provided answer booklet. Please write legibly in the
space provided for each exercise and, if necessary, clearly indicate your final answer.

e You may use the question booklet as scratch paper, but we will only score your answer
booklet.

e Turn in both the exam question and answer booklets.

Page 1 of 7



Concepts (24 points):

For each of the following questions, choose the single best answer from the choices provided. Com-
pletely fill in the bubble corresponding to your choice in the answer booklet. If you make a mistake
(e.g., by filling in multiple bubbles), write the letter of your choice next to the question number in
the answer booklet.

1. What is not possible in a purely functional language?

a. strict evaluation
b. function composition
c. tail-call recursion

d. side-effects

2. When we say that Haskell is a statically typed language, we mean that:

a. type-errors are caught automatically at run-time
b. it has a sophisticated type inference system
c. functions, but not values, must have type signatures

d. type-checking is performed at compile time

3. We say that a function of many arguments is curried when:

a. it composes its arguments into new functions
b. it accepts a tuple created from all its arguments
c. it fails to type-check its arguments correctly

d. it takes its arguments one at a time, returning a new function each time

4. The type signature of a polymorphic function will contain at least one:

. type variable

a
b. class constraint

o

higher-order function

d. list parameter

5. When a class constraint is used in a type signature, it means that:

a. type-checking will be performed by the class
b. the associated type variable must be an instance of the specific class

methods of that class will be called on the associated argument

/e o

the described function can only be called through an instance of the class

Page 2 of 7



6. Property-based testing is an approach to testing where:

10.

a.

type-inference is the primary method of ensuring correctness

b. we manually write input/output specifications for the system

. we define properties of a system and then rely on randomly generated test cases to check

that the properties hold

full test coverage is achieved by testing every possible input to every function, based on
type inference information

One of the undesirable consequences of using a lazy evaluation strategy in Haskell may be:

a.
b.

it is not possible to write tail-recursive functions

expressions are evaluated even when their results are not needed

c. unevaluated thunks build up in memory and negatively impact performance

e

=

IS

o

d.

a.
b.
c.
d.

expressions evaluate to the incorrect results because they are performed in the wrong order

higher-order function is a function that:

can only be called by other higher-order functions
either accepts or returns a function
makes use of parametric polymorphism

makes use of recursion

. List comprehension syntax in Haskell is essentially syntactic sugar for:

map and filter
foldr and foldl
zip and unzip

iterate and until

In a tail-recursive function:

a.
b.
c.
d.

the result of the recursive call is pattern matched
the recursive call is the last operation performed
an accumulator is always used to “build up” a result

foldl is used to process the result of each recursive call

Page 3 of 7



11. A scenario where it is necessary to use a right fold (foldr) over a left fold (foldl) is when:

a. the input list is infinite
b. the combining function is commutative
c. the combining function is left-associative

d. it is desirable to reverse the order of the input list

12. A scenario where a strict left fold is likely more efficient than a right fold is when:

a. the input list is infinite
b. the combining function is commutative

. the left fold is implemented tail-recursively

[aTaNNe)

. the combining function is strict in both arguments

Page 4 of 7



Function type matching (16 points):

Match each of the function definitions on the left with its type signature on the right. Some of the
type signatures are not used. In the answer booklet, write the letter (one of A-M) designating your
chosen type signature in the blank corresponding to the numbered function definition.

- — A
fn = filter even fn :: Num a => (a -> Bool) -> [a] -> [a]
- B
-— 2 fn :: Ord a => [a] -> a -> a
fn x y = (head y) : show x
-c
fn :: Integral a => [a] -> [al]
-3
fn [1 _ =[] --D
fn (x:xs) (y,z) = (z,x) : fn xs (z,y) fn :: Num a => [a] -> (a -=> b) > b
- E
- 4 fn :: (b -> a) -> [a] -> b -> [a]
fn £ x = map (\(y,z) > £y 2z) x
-~ F
fn :: Show a => [a] -> [String] -> [String]
-5
fn x y = [show v ++ w | v <- x, w <~ y] -G
fn :: (a => [b] -> [b]) -> a -> [a] -> [b]
-6 - H
fnfgh=g.h.f fn :: String -> String -> String
-1
-7 fn :: (a > b -> c) -> [(a,b)] > [c]
finly=y
fn (x:xs) y | x <y = fn xs x - J
| otherwise = fn xs y fn :: ((b,a) -> c) -> [(b,a)] -> [c]
- K
-- 8 fn :: (@ ->Db) > (c->4d) > (b ->¢c) >a->4d
fn f x = foldl (flip f) (f x []1)
- L
fn :: Show a => a -> String -> String
— M

fn :: [a] -> (a,a) -> [(a,a)]

Page 5 of 7



Polymorphic functions (12 points):

For each of the following parametric polymorphic function type signatures, write a valid corre-
sponding function definition in the space provided in the answer booklet. A valid definition is one
which, when applied to as many input arguments as possible, will evaluate to a result of the correct
type (in the case of a list result, the list should be non-empty whenever possible). Your definitions
may use any of the HOFs covered in class.

1. gt :: (@a->b->c)->a->[b] > [c]
2. g2::(a->b) >(c->d >((Md->d->e) >a->c—>e
3. g3 ::b->((a->b) >c) >c

4. g4 :: (a > (b,c)) > (b >c ->4d) ->a->d

Function evaluation (12 points):
Consider the following function definitions:

hi :: (a->b) > (b ->¢c) ->a->c
hi1 f gx =g (f x)

h2 :: (a -> [a] -> [a]) -> [a]l -> [[al]
h2 £ [x] = [[x]]
h2 f (x:xs8) = f x xs : h2 f xs

h3 :: (Integer -> Bool) -> (Integer -> Integer) -> Integer -> [Integer]
h3pf x| px= [x]
| otherwise = x : h3 p £ (f x)

h4 :: (a -> Bool) -> [a] -> (a -> b) -> [b]
h4 p xs £ = map f (filter p xs)

In the answer booklet you will find expressions that make use of the function definitions above. For
each expression, write the result of evaluating the expression in the space provided.

Page 6 of 7



Code completion (20 points):

For this problem you are to correctly complete the partial function definitions found in the an-
swer booklet, whose behavior (along with rules/restrictions concerning your implementation) are
specified below. Do not change any of the provided code!

1. minmax takes a non-empty list and returns a tuple containing its minimum and maximum
elements. E.g., minmax [3,1,6,2] = (1,6). You may use the existing functions min and
max (which are binary functions that return the min/max of their two arguments).

2. collections takes an integer n > 0 and a list of tuples (i, 2) where i is an integer > 0 that
indicates how many copies of the value x can be used. It returns a list of lists of length
n that can be constructed from the available values (where order doesn’t matter). E.g.,
collections 3 [(3,'A'),(1,'B'),(2,'C')] = ["AAA","AAB","AAC","ABC","ACC","BCC"].

3. isRepetitionsO0f takes two finite lists {1 and [2 and decides if {2 consists of 0 or more
complete repetitions of /1. E.g., isRepetitions0f "hey" "heyheyhey" = True
and isRepetitions0f "abc" "abcab" = False. Your implementation should use a tail-
recursive helper function.

4. bin takes a list of predicates ps and a list of values xs, and returns a list of lists, where
each sublist contains only the values from xs that satisfy the corresponding predicate from
ps. E.g., bin [even,odd, (<3)] [1..5] = [[2,4],[1,3,5],[1,2]1]. Your implementation
should use foldr instead of explicit recursion.

Page 7 of 7



