<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(/24):</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(/16):</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(/12):</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(/12):</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(/20):</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>(/84):</td>
<td></td>
</tr>
</tbody>
</table>
Concepts

1. A B C D
2. A B C D
3. A B C D
4. A B C D
5. A B C D
6. A B C D
7. A B C D
8. A B C D
9. A B C D
10. A B C D
11. A B C D
12. A B C D

Function type matching

1. ________
2. ________
3. ________
4. ________
5. ________
6. ________
7. ________
8. ________
Polymorphic functions

1. \(g_1 \ f \ x \ ys = \)

2. \(g_2 \ f \ g \ h \ x \ y = \)

3. \(g_3 \ x \ f = \)

4. \(g_4 \ f \ g \ x = \)

Function evaluation

1. \(h_1 \ (*10) \ (+) \ 34 \ 2 \)

2. \(h_2 \ (::) \ "cs340" \)

3. \(h_3 \ ((\`mod` 1000) \ `h_1` \ (`\div` 3) \ `h_1` \ (== 8)) \ (*2) \ 1 \)

4. \(h_4 \ (\text{length} \ `h_1` \ \text{odd}) \ ["eat","jump","hop","laugh","sing","dance"] \ (++)"s") \)
1. minmax :: Ord a => [a] -> (a,a)
 minmax [x] = (x,x)
 minmax (x:xs) =

2. collections :: Int -> [(Int, a)] -> [[a]]
 collections 0 _ = [[]]
 collections _ [] = []
 collections n ((0,_) : xs) = collections n xs
 collections n ((i,x) : xs) =

3. isRepetitionsOf :: Eq a => [a] -> [a] -> Bool
 isRepetitionsOf l1 l2 = rec l1 l2
 where rec [] [] = True
 rec _ [] = False
 rec [] xs = rec l1 xs
 rec (x:xs) (y:ys) =

4. bin :: [a -> Bool] -> [a] -> [[a]]
 bin ps xs = foldr