
1. Evaluating Folds (9 points):

Show the result of evaluating each of the following expressions involving either foldr or foldl.

(A) foldl (\(y1,y2) x -> ((min x y1), (max x y2)))

(100,0)

[5,10..95]

> (5, 95)

(B) foldr iter [""] "hello"

where iter x y = map (x:) ("":y)

> ["h","he","hel","hell","hello","hello"]

(C) foldl iter id ["ad", "id", "al"] "CS"

where iter r x = \w -> r (w ++ "-" ++ reverse x)

> "CS-la-di-da"

Page 1 of 7

2. Defining Functors, Applicatives, and Monads (12 points):

Consider the following data type:

data Weighted a = WZero a | WVar Int a

The Weighted type is used to assign arbitrary integer weights to values (WZero implies a weight of
0, while WVar lets us attach an Int weight). When Weighted values are combined via Applicative

or Monad functions, weights are simply summed.

Examples of using Weighted values as Functors, Applicatives, and Monads follow:

fmap reverse (WVar 5 "hello") -- > WVar 5 "olleh"

pure reverse <*> pure "hello" -- > WZero "olleh"

(++) <$> WVar 2 "hello" <*> WVar 3 "world" -- > WVar 5 "helloworld"

do v1 <- WVar 3 "This"

v2 <- WZero "Is"

v3 <- WVar 7 "An"

v4 <- WZero "Example"

return (v1++v2++v3++v4) -- > WVar 10 "ThisIsAnExample"

Define the Weighted Functor, Applicative, and Monad instances on the next page.

instance Functor Weighted where

fmap f (WZero x) = WZero $ f x

fmap f (WVar n x) = WVar n $ f x

instance Applicative Weighted where

pure x = WZero x

(WZero f) <*> (WZero x) = WZero $ f x

(WZero f) <*> (WVar n x) = WVar n $ f x

(WVar n f) <*> (WZero x) = WVar n $ f x

(WVar m f) <*> (WVar n x) = WVar (m+n) (f x)

instance Monad Weighted where

return = pure

(WZero x) >>= f = f x

(WVar m x) >>= f = case f x of (WZero y) -> WVar m y

(WVar n y) -> WVar (m+n) y

Page 2 of 7

3. Using the State Monad (12 points):

Consider the following functions that return State monads.

fwd :: Int -> State [a] ()

fwd n = State $ \xs -> ((), drop n xs ++ take n xs)

rew :: Int -> State [a] ()

rew n = State $ \xs -> let n' = length xs - n

in ((), drop n' xs ++ take n' xs)

swp :: a -> State [a] a

swp x = State $ \(y:ys) -> (y, x:ys)

red :: (a -> a -> a) -> State [a] a

red f = State $ \l@(x:xs) -> (foldr f x xs, l)

For each of the following, determine the return value of the call to run. Note that the definition of
the State monad is provided at the end of the exam.

(A) run (fwd 3) [1..10]

> ((),[4,5,6,7,8,9,10,1,2,3])

(B) run (fmap (+50) (swp 8)) [1..10]

> (51,[8,2,3,4,5,6,7,8,9,10])

(C) run (pure (*) <*> (swp 10) <*> (red (-))) [2, 4, 7]

> (14,[10,4,7])

(D) run (do x <- swp "the"

fwd 1

y <- swp "red"

rew 4

fwd 3) ["smurfs", "are", "small", "and", "blue"]

> ((),["the","red","small","and","blue"])

Page 3 of 7

4. Monadic Parsing (12 points):

For this problem you are to implement a monadic parser for a simple subset of HTML, where valid
input consists of a properly formatted element, identified by matching opening and closing tags of
the form <TAGNAME> and </TAGNAME>. Tag names can be made up of only alphabetical characters
(lower and uppercase). An element can contain zero or more elements, and elements can also be
nested.

After parsing valid input, your parser should return the names of the elements in a tree that mimics
the structure of the input, where the tree data type is defined as follows:

data Tree a = Node a [Tree a]

Below are sample valid inputs, each accompanied by the tree obtained by parsing it (note that
indentation is not important to the syntax):

<foo></foo>

-- > Node "foo" []

<a>

<c></c>

-- > Node "a" [Node "b" [Node "c" []]]

<a>

<c></c>

-- > Node "a" [Node "b" [],Node "c" []]

On the next page, implement the parser element. You may define as many other parsers as you
wish to use in element. The Parser monad and related functions are given at the end of the
exam.

A parser that succeeds on valid input and fails on invalid input will receive 75% of the points;
additionally returning a correct tree will earn full points.

Page 4 of 7

element :: Parser (Tree String)

element = do name <- openTag

names <- many element

closeTag name

return (Node name names)

tagName :: Parser String

tagName = some alpha

openTag :: Parser String

openTag = do symbol "<"

name <- tagName

symbol ">"

return name

closeTag :: String -> Parser ()

closeTag name = do symbol "</"

symbol name

symbol ">"

return ()

Page 5 of 7

5. Evaluating Search (12 points):

For this problem we’ll consider a simple type of “sliding pieces” puzzle, which consists of 2 or more
rows of values. The values in each row can be shifted to the left to change their ordering. The
puzzle is considered solved when the values across all rows have the same ordering.

E.g., the puzzle ["ABCD", "DABC", "ABCD"] has three rows of values, each row containing 4
characters. To solve this puzzle, we could shift the row "DABC" once, which takes the 'D' from the
front and moves it to the end of the row — the resulting row, "ABCD", matches the others, and so
we are done.

Below we define types and a function used to represent such puzzles and to try out moves. Each
entry in a move list corresponds to the index of a row to be shifted once.

type Puzzle = [String]

type PuzzleMoves = [Int]

runMoves :: Puzzle -> PuzzleMoves -> Puzzle

runMoves p sol = foldl flipPuzz p sol

where flipPuzz p n = let row = p !! n

row' = drop 1 row ++ take 1 row

in take n p ++ [row'] ++ drop (n+1) p

The following are sample calls to runMoves, along with their results (illustrating three different
ways of solving the puzzle described above):

runMoves ["ABCD", "DABC", "ABCD"] [1] -- > ["ABCD","ABCD","ABCD"]

runMoves ["ABCD", "DABC", "ABCD"] [0,2,1,1] -- > ["BCDA","BCDA","BCDA"]

runMoves ["ABCD", "DABC", "ABCD"] [0,0,0,2,2,2] -- > ["DABC","DABC","DABC"]

The (partly defined) function puzzleSearch searches for a solution to a provided puzzle using
bestFirstSearch (given at the end of the exam). Answer the questions on the following page
based on puzzleSearch.

puzzleSearch :: Puzzle -> Maybe PuzzleMoves

puzzleSearch puzz = bestFirstSearch goal succ score []

where succ sol = map (\i -> (sol++[i])) [0..(length puzz-1)]

goal sol = undefined

score sol = undefined

Page 6 of 7

(A) Implement a suitable goal function for puzzleSearch. (You may use runMoves in your
implementation.)

goal sol = let sol' = runMoves puzz sol

in all (== head sol') (tail sol')

(B) Implement a score function for puzzleSearch which will enable it to find a solution that
takes a minimal number of moves.

score sol = length sol -- (minimal solution)

(C) Consider the following definition of score:

score sol = let puzz' = runMoves puzz sol

in length $ filter (/= head puzz') (tail puzz')

Assuming that the goal function is working correctly, what is the result of the following call
to puzzleSearch, using the above score function?

puzzleSearch ["*...", ".*..", "...*", "*..."]

> Just [1,2,2,2]

Page 7 of 7

