Preliminaries

Science	Computer Science

CS 331: Data Structures and Algorithms Michael Lee <lee@iit.edu>

Michael Lee

- lee@iit.edu
- <u>http://moss.cs.iit.edu</u>
- Office hours by appointment (Tue/Thu 11AM-1PM)

Agenda

- Course overview & Administrivia
 - Prerequisites
 - Topics & Resources
 - Grading
 - Dev environment & Class procedures

Data Structures

& Algorithms

- processing operations?
- How do we analyze and describe their performance?

- How do we store, organize, and retrieve data on a computer?

- How can we efficiently (in space/time) carry out some typical data

Prerequisites

- I assume you are ...

- fluent in some programming language
 - familiar with procedural & OO paradigms
- comfortable with development processes:
 - compilation, debugging, testing

Python

- structures & algorithms
- popular language
 - Ton of useful, powerful libraries

- Easy-to-learn, clean ("one obvious way to do" things), and

- We'll use the Python programming language to explore data

Topics

- Python crash course
- Algorithmic analysis
- Linear data structures (Lists, Stacks, Queues)
- Mapping structures (Hashtables and Trees)
- Recursion

s, Stacks, Queues) es and Trees)

1. Course website: moss.cs.iit.edu/cs331

- static information

- lecture calendar, slides, links to external resources, etc.

0 🔒 moss.cs.iit.edu C

CS 331: Data Structures and Algorithms

Announcements

- You should have received an invitation to Mimir, the platform where you'll be completing all assessments this summer. If not, you can <u>sign up here</u>
- We will be using Discord as our peer support and Q/A forum. If you aren't already a member, please join at https://discord.gg/Kpxqbbp

Calendar

The lecture calendar is tentative and may be updated

You can find both starter and completed lecture notebooks in the class GitHub repository, and can also open them directly via Google Colab. Direct links to completed lecture notebooks below are provided for convenience.

Date	Торіс	Notes	Supplements
Aug 25	Syllabus and Overview	00-intro.pdf	<u>Syllabus</u> PythonDS <u>1.5</u> - <u>1.6</u>
Aug 27 - Sep 8	Python language intro	<u>01-lang-intro-a</u> <u>02-lang-intro-b</u> <u>03-lang-intro-c</u>	PythonDS <u>1.7-1.13</u> Python Tutorial
Sep 10 - Sep 15	Python data structures	04-ds-demo	PythonDS 1.8.2
Sep 17 - Sep 22	Timing and Runtime complexity	runtime-complexity.pdf 05-timing	PythonDS <u>3.2-3.7</u>
Sep 24	Array-backed list	06-array-list	PythonDS <u>4.19</u> - <u>4.20</u>
Sep 29	Iterators and Generators	07-iterators	
Oct 1	Linked structures	08-linked-structures	
Oct 6 - Oct 13	Linked list	09-linked-list	PythonDS 4.21

2. Google Colaboratory

- interactive lecture notebooks

3. Blackboard

- Final gradebook

4. GitHub

- Assignment distribution & submission

cs331ds / lab00 (Private) ◇ Code ⊙ Issues 『♪ P		Image: Security Image: Match o		
^{₽9} main →	Go to file Add file - <>	Code - Use this template -	About	
michaelee Adding point va	No description, website, or topics provided.			
.github	Adding Classroom autograding workflow	2 days ago	C Readme	
.vscode	Switching to pytest	3 days ago	☆ 0 stars ⓒ 0 watching ♀ 0 forks	
images	Updating images for writeup	2 days ago		
tests	Expanding tests	2 days ago		
🗋 .gitignore	Initial commit	5 months ago	Releases	
🖺 README.md	Adding point values to exercises		No releases published Create a new release	
🗋 palindrome.py	Adding docstrings and annotations to source files	2 days ago		
🕒 sum.py	Adding docstrings and annotations to source files		Packages	
i≘ README.md			No packages published Publish your first package	
Lab 00: Logi	stics		Languages	
Goals			• Python 100.0%	

- run included tests and and interpret their outp
- ommit and submit (push) your wo

Supplements

- The Python Tutorial (<u>docs.python.org/3/</u>)
- Problem Solving with Algorithms and Data Structures Using Python

Grading

- 40% Programming Assignments
- 60% Exams (3 total: 2 midterms + final)

Programming Assignments

- ~ 10 assignments

- All assignments are retrieved and submitted via GitHub - Provided codebase typically covered in preceding lectures
- Late policy: elastic over summer
 - Hard due date for everything: June 24

On Exams

- Will be administered online, to be taken on your own computer (or in lab)
- Later exam scores, if higher, will improve earlier ones

- Tentative dates are on course website (June 3, June 10) - All exams are cumulative (but will focus on recent material)

>> scores = [60, 80, 75] >> [max(scores[i:]) for i in range(3)] [80, 80, 75]

>> scores = [75, 80, 100] >> [max(scores[i:]) for i in range(3)] [100, 100, 100]

Jupyter Notebook

- In-browser Python development platform - "Cells" can contain plain text, code, output (and more) - All lecture notes will be distributed as notebook files

Jupyter Notebook

- Code (VSCode) as an IDE for both lectures & labs
 - Install the Jupyter and Python extensions

- We strongly recommend installing Microsoft Visual Studio

Interactive Lectures

- Lecture notebooks available in course repository
 - Open on Google Colab or VSCode
 - Class is usually one long interactive demo
- Starter and completed lecture notebooks are available in the course GitHub repository

