Preliminaries

CS 331: Data Structures and Algorithms
Michael Saelee <lee@iit.edu>
Michael (Sae) Lee

- lee@iit.edu
- http://moss.cs.iit.edu
- Office: SB 226C
Agenda

- Course overview & Administrivia
 - Prerequisites
 - Topics & Resources
 - Grading
 - Dev environment & Class procedures
Data Structures
- How do we store, organize, and retrieve data on a computer?

& Algorithms
- How can we efficiently (in space/time) carry out some typical data processing operations?
- How do we analyze and describe their performance?
Prerequisites

- I assume you are …
 - fluent in some programming language
 - familiar with procedural & OO paradigms
- comfortable with development processes:
 - compilation, debugging, testing
Python

- We’ll use the Python programming language to explore data structures & algorithms
- Easy-to-learn, clean (“one obvious way to do” things), and popular language
- Ton of useful, powerful libraries
Topics

- Python crash course
- Algorithmic analysis
- Linear data structures (Lists, Stacks, Queues)
- Hashing and Hashtables (aka Maps)
- Recursion and Trees
Online resources

1. Course website: moss.cs.iit.edu/cs331/saelee
 - static information
 - lecture calendar, slides, external resources, etc.
Online resources

2. Learning platform: Mimir
 - interactive lab and lecture notebooks (using Project Jupyter)
 - quizzes for self-evaluation
Online resources

3. Blackboard
 - only for grade reporting!
Online resources

4. Piazza: discussion forum
 - all class-related questions
 - monitored by TAs
 - scales way better than e-mail
Teaching Assistants (SB 108)

- Section 04: **Ismael Lopez**
 - Hours: Mon/Wed 7PM-8PM

- Section 04: **Jay Huang**
 - Hours: 12:15PM-2:15PM

- Section 04: **Sahill Sharma**
 - Hours: Mon 10:25AM-11:25AM, Wed 10AM-11AM

- Section 05: **Noah Dela Rosa**
 - Hours: Fri 1:45PM-3:45PM

- Section 06: **Samuel Golden**
 - Hours: Tue/Thu 3:30PM-4:30PM

- Section 05/06: **Safa Slote**
 - Hours: Tue 11:30AM-12:30PM
Supplements

- The Python Tutorial (docs.python.org/3/)

- Problem Solving with Algorithms and Data Structures Using Python
Grading

- 30% Machine Problems
- 10% Quizzes / Self-evaluation
- 60% Exams (3 total: 2 midterms + final)
On Exams

- Exams are all *cumulative*

- Tentative midterm exam dates published on class website
 - Sep 20, Oct 25: coverage will end at least 1 week before each exam
Machine Problems

- New programming assignment every week
- All assignments are retrieved and submitted on Mimir
 - Provided codebase covered in preceding lectures
Jupyter Notebook

- In-browser Python development platform
 - “Cells” can contain plain text, code, output (and more)
- All lecture notes, demos, and assignments will be distributed as notebook files
Jupyter Notebook

- You can optionally install a notebook server on your own computer for convenience
- Install via Anaconda ("classic" Jupyter Notebook with Python3) — see http://jupyter.org/install.html
Interactive Lectures

- Lecture notebooks released as 0-point “assignments”
- Open on Mimir (or download into local notebook server) to edit and follow along during class
- Class is usually one long interactive demo. Bring your laptop to follow along!
- Completed notebooks will be posted on the class website
§ Questions & Demo