CS 331 Spring 2019
Midterm Exam 2

Instructions:

e This exam is closed-book, closed-notes. Calculators are not permitted.

e For numbered, multiple-choice questions, fill your answer in the corresponding row on the
“bubble” sheet.

e For problems that require a written solution (labeled with the prefix “WP”), write your
answer in the space provided on the written solution sheet. Please write legibly and clearly
indicate your final answer.

e Turn in the exam question packet, bubble sheet, and written solution sheet separately.

e Good luck!

Page 1 of 7

Concepts (24 points):

1. What is the run-time complexity of inserting a new element at the beginning of a circular,
doubly-linked list with a sentinel head?

(a) O(1)

(b) O(log N)
(c) O(N)
(d) O(N?)

2. What is the run-time complexity of locating and deleting a specified key from a hashtable
containing N key/value pairs?

(a) O(1)

(b) O(log N)
(c) O(N)
(d) O(N?)

3. What is the run-time complexity of increasing the number of buckets and rehashing all ele-
ments into the new buckets in a hashtable, given N key/value pairs?

(a) O(1)

(b) O(log N)
(c) O(N)
(d) O(N?)

4. Given a circular, doubly-linked list whose contents are sorted in ascending order, what is
the run-time complexity for inserting a new element into the list so that it remains correctly
sorted? (Including the time required to search for the element’s correct position.)

(a) O(1)

(b) O(log N)
(c) O(N)
(d) O(N?)

5. Which implementation of the list ADT is best suited to an application where the most common
operations are to insert and remove values from the beginning and end of the list?

(a) built-in Python list

(b)

(c) singly-linked list
)

(d) doubly-linked list

array-backed list

Page 2 of 7

. Which of the following best describes the behavior of the Stack ADT?

(a) first-in, first-out

(b) last-in, first-out

(c) first-in, second-out
)

(d) last-in, last-out

Which of the following best describes the behavior of the Queue ADT?

first-in, last-out

(a)
(b)
()

)

(d) last-in, last-out

last-in, first-out

first-in, second-out

8. If we assume uniform hashing, what is the probability that a collision will occur in a hashtable
with 100 buckets and 2 keys?
(a) 15
2
(b) 1155
(c) 1 - 159
99 98
(d) 1— 155 X 105
9. What are the contents of the list 1 after executing the following code?
s = Stack()
q = QueueQ
1 =1

for x in range(10):
s.push(x)

while s:
q.enqueue (s.pop())

while q:
1.append(q.dequeue())

(a) [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
(b) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
(c) [1, 0, 3,2, 5, 4, 7, 6, 9, 8]
(d) [1

Page 3 of 7

10. Which correctly prepends value to a circular, doubly-linked list with a sentinel head?

(a)

= LinkedList.Node(value, prior=self.head.prior, next=self.head.next)
.prior = n.prior = n

= LinkedList.Node(value, prior=self.head, next=self.head.next)
.prior.next = n.next.prior = n

= LinkedList.Node(value, prior=self.head, next=self.head.prior)
.next, n.prior = n, n.next.prior

= LinkedList.Node(value, prior=self.head.next, next=self.head.next.next)
.next.prior = n.prior.next = n

BB BB BB BB

11. If to_del refers to a node in a circular, doubly-linked list with a sentinel head, which of the
following correctly removes the node from the list?

(a) to_del.next = to_del.prior
to_del.prior = to_del.next

(b) to_del.prior.next = to_del.next
to_del.next.prior = to_del.prior

(C) to_del.prior.prior = to_del.next.next
to_del.next.next = to_del.prior.prior

(d) to_del.next, to_del.prior = to_del.prior, to_del.next

12. Which correctly computes the index for the provided key’s bucket in a hashtable implemen-

tation?

(a) bucket_idx = hash(key) % len(self.buckets)

(b) bucket_idx = hash(key) // len(self.buckets)

(c) bucket_idx = hash(key + value) % len(self.buckets)
(d) bucket_idx = hash(key) % len(self)

Page 4 of 7

Linked Lists (8 points):

WP1 Implement the merge method for the LinkedList data structure (implemented as a circular,
doubly-linked list with a sentinel head). merge will be called with a list argument (also a
LinkedList), whose contents will be merged in after the existing elements. This operation
will be carried out in O(1) time, without creating any additional nodes and only by adjusting
links. After the operation, the argument list can no longer be used reliably. Sample usage
below:

11 = LinkedList()
for x in range(5):
11.append(x)

11 contains [0, 1, 2, 3, 4]

12 = LinkedList()

for x in range(5,10):
12.append (x)

12 contains [5, 6, 7, 8, 9]

11 .merge(12)

11 contains [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Criteria:

e You should not call any other LinkedList methods.

e You should not change the value contained in any of the nodes nor create any new nodes.
Instead, your implementation should work by re-linking existing nodes.

Page 5 of 7

Queues (8 points):

WP2 Implement the promote method for the singly-linked Queue data structure, which takes an
integer and moves the element at that position in the queue (where the head is at position 0)
one position closer to the head. Sample usage below — the queue contents are shown in list
form, with the head on the left and the tail on the right:

q = QueueQ)
for x in 'abcdefg'
q.enqueue (x)
q contains [a, b, ¢, d, e, f, g]
q.promote(1)
q contains [b, a, c, d, e, f, g]

q.promote(3)

q contains [b, a, d, c, e, f, gl

Criteria:

e You should not call any other Queue methods.

e You should not change the value contained in any of the nodes nor create any new nodes.
Instead, your implementation should work by re-linking existing nodes.

Page 6 of 7

Hashtables (8 points):

WP3 Re-implement the __setitem__ and __getitem__ methods of the Hashtable data structure
so that it keeps track of all past values associated with a given key, which can then be accessed
— in the order they were added — using the iterator returned by __getitem__. Below is a
sample interaction with the updated Hashtable:

ht = Hashtable()

ht['a'] = 'apple'

ht['b'] = 'banana'’

ht['a'] = 'avocado'

ht['b'] = 'bamboo'’

ht['c'] = 'cabbage'

ht['a']l = 'artichoke'

for v in ht['a']: # prints 'apple', 'avocado', 'artichoke' (in that order)
print (v)

for v in ht['c']: # prints 'cabbage’
print (v)
Criteria:

e Note that the implementation you are updating is based on the basic Hashtable presented
in class, not the sorted Hashtable you built in lab — for this problem you do not need
to guarantee that the ordering of keys is preserved!

Page 7 of 7

