
CS 331 Spring 2019

Midterm Exam

Instructions:

• This exam is closed-book, closed-notes. Computers of any kind are not permitted.

• For numbered, multiple-choice questions, fill your answer in the corresponding row on the
“bubble” sheet.

• For problems that require a written solution (labeled with the prefix “WP”), write your
answer in the space provided on the written solution sheet. Please write legibly and clearly
indicate your final answer.

• Turn in the exam question packet, bubble sheet, and written solution sheet separately.

Page 1 of 7



Basic Concepts (24 points):

1. What are the contents of the list lst after the following code is executed?

lst = [x+y for x in ['a', 'the', 'one']

for y in [' car', ' fish']]

(a) ['a car', 'the car', 'one car', 'a fish', 'the fish', 'one fish']

(b) ['a car', 'a fish', 'the car', 'the fish', 'one car', 'one fish']

(c) [['a car', 'a fish'], ['the car', 'the fish'], ['one car', 'one fish']]

(d) ['a car fish', 'the car fish', 'one car fish']

2. Consider the following iterator implementation:

class MyIt:

def __init__(self):

self.x = 100

def __iter__(self):

return self

def __next__(self):

if self.x < 0:

raise StopIteration

else:

self.x -= 20

return self.x

What is the result of the expression [x for x in MyIt()]?

(a) [100, 80, 60, 40, 20, 0]

(b) [80, 60, 40, 20, 0, -20]

(c) [80, 60, 40, 20, 0]

(d) An exception is raised before a result is computed.

3. Consider the following generator function:

def my_gen(i, j, k):

while i <= j:

if i % k == 0:

yield k

yield i

i += 1

What is the result of the expression [x for x in my_gen(1, 8, 2)]?

(a) [1, 2, 3, 2, 5, 2, 7, 2]

(b) [1, 2, 3, 4, 5, 6, 7, 8]

(c) [1, 2, 2, 3, 2, 4, 5, 2, 6, 7, 2, 8]

(d) [2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8]

Page 2 of 7



4. What is the worst-case runtime complexity of retrieving the last element given its index from
an array-backed list of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N2)

5. What is the worst-case runtime complexity of swapping the values at two different indexes in
an array-backed list of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N2)

6. Consider a scenario where we wish to search for an item in an unsorted array-backed list of
N elements, but only care whether it appears in the second half of the list. What is the
worst-case runtime complexity of this search?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N2)

7. What is the worst-case runtime complexity of using insertion sort to sort the contents of an
array-backed list of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N2)

8. What is the maximum number of elements a properly implemented binary search will need to
compare a value against in order to determine its position in a sorted list of 30,000 elements?

(a) 5

(b) 10

(c) 15

(d) 20

Page 3 of 7



9. Which of the following relations is true?

(a) n! = O(n)

(b) 3n + 10 = O(n)

(c) n2 − 1000 = O(log n)

(d) 2n = O(n2)

10. What best describes the relationship between f(n) and g(n) if f(n) = O(g(n))?

(a) as n gets large, g(n) is less than or equal to some multiple of f(n)

(b) as n gets large, f(n) is less than or equal to some multiple of g(n)

(c) there is some n that makes f(n) less than g(n)

(d) the maximum value of f(n) is less than the maximum value of g(n) (for positive n)

11. Which of the following datatypes in Python is mutable?

(a) integer

(b) string

(c) tuple

(d) dictionary

12. When might you prefer to use a list comprehension instead of a semantically equivalent
generator expression to compute a sequence of values?

(a) when we need to use the sequence as a target of a for loop

(b) when the sequence will be iterated over once and then discarded

(c) when the sequence will only be iterated over partially

(d) when we need random access (by index) to the values in the sequence

Page 4 of 7



Estimating Big-O (9 points):

For each of the following functions, determine the corresponding worst-case runtime complexity in
terms of N . Assume that any lst arguments are Python lists.

13. def fA(N):

accum = 0

for i in range(N):

for j in range(i+1):

accum += j

return accum

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N2)

14. def fB(lst):

N = len(lst)

accum = 0

for i in range(N):

accum += lst[i]

for j in range(N-1, -1, -1):

accum += lst[j]

return accum

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N2)

15. def fC(lst):

N = len(lst)

if N > 1:

mid = N // 2

if lst[mid] < lst[0] and lst[mid] < lst[N-1]:

return lst[mid]

elif lst[0] < lst[N-1]:

return lst[0]

else:

return lst[N-1]

else:

return lst[0]

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N2)

Page 5 of 7



Lists and Dicts (6 points):

WP1 Implement consolidate, which accepts a list of lists in the parameter lsts, and returns
a dictionary whose keys consist of values found in the input lists, which map to numbers
indicating how many times each value appears across all the lists.

E.g., consolidate([1,2,3], [1,1,1], [2,4], [1]) should return the dictionary
{1: 5, 2: 2, 3: 1, 4: 1}.

Mystery Sort (8 points):

Consider the following mystery sort function:

def mystery_sort(lst):

for i in range(len(lst), 0, -1):

print(lst) # display list contents

swapped = False

for j in range(i-1):

if lst[j] > lst[j+1]:

lst[j], lst[j+1] = lst[j+1], lst[j]

swapped = True

if not swapped:

break

WP2 (a) Show the list contents, in order, displayed by all calls to print(lst) when mystery_sort

is called with the input list [7, 5, 2, 8, 6, 3, 4, 1]. (3 points)

WP2 (b) What is the Big-O runtime complexity of mystery_sort, when called with an input list
of length N? (2 points)

WP2 (c) What sort of input list will result in the best-case runtime performance for
mystery_sort? Explain. (3 points)

Page 6 of 7



Array-backed List (8 points):

WP3 Implement the array-backed list method insert_all, which accepts a valid index idx and
another list other, and inserts all values from other into the underlying array starting at
index idx. Your implementation should not use any other array-list methods, and may only
perform the following operations on the backing array (named data in the provided skeleton
code):

• len(self.data)

• Accessing a valid, positive index (e.g., self.data[i])

• self.data.append(None)

• del self.data[len(self.data)-1]

You may use len(other) to obtain the number of the elements in the other list, and access
elements in other by valid, positive indexes (e.g., other[i]).

E.g., calling insert_all(3, ['a', 'b', 'c']) on a list with data contents
[0, 1, 2, 3, 4] results in data being updated to [0, 1, 2, 'a', 'b', 'c', 3, 4].

For full credit, your implementation should run in O(M + N) time, where M is the number
of elements in the array-backed list, and N is the number of elements in other.

Page 7 of 7


