
1 of 10

(a) a = b = b = a

(b) a, b = b, a

(c) a, b = a, b

(d) a = b = (a, b)

1. Which line swaps the contents of variables a and b?

(a) 9

(b) !!!

(c) hi!hi!hi!

(d) There is no output; the code produces an error

2. What is the output of the following program?

s = "hi!"
print(s * len(s))

(a) Adding an __init__ method to Foo that initializes the w attribute

(b) Renaming the first parameter of bar (and other references to s) to self

(c) Removing the parameter s from the definition of bar

(d) Removing the argument f in the call to method bar

3. The following program produces an error when run:

class Foo:
 def bar(s, x, y):
 s.w = x + y
 return s.w

f = Foo()
f.bar(f, 5, 10)

Which of the following would fix the error?

CS 331 Midterm Exam 1
Friday, February 24th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID number (without the leading ‘A’).

2 of 10

(a) mid = lo + 1 / mid = hi - 1

(b) lo = hi – mid / hi = lo + mid

(c) hi = mid + 1 / lo = mid - 1

(d) lo = mid + 1 / hi = mid - 1

4. Consider the following incomplete implementation of binary_search:

def binary_search(lst, x): # lst is sorted in ascending order
 lo = 0
 hi = len(lst)-1
 while lo <= hi:
 mid = (lo + hi) // 2
 if lst[mid] < x:
 ________________ #1
 elif lst[mid] > x:
 ________________ #2
 else:
 return True # x is found in lst
 return False # x is not found in lst

Which of the following correctly fill in blanks #1 and #2 (in that order)?

(a) Yielding 0
0

(b) Yielding 0
0
Yielded 0

(c) 0
Yielding 0
Yielded 0

(d) Yielding 0
Yielded 0
0

5. What is the output of the following program?

def gen(n):
 for x in range(n):
 print('Yielding', x)
 yield x
 print('Yielded', x)

g = gen(10)
print(next(g))

3 of 10

(a) [3, 4, 5, 5, 6, 7, 6, 7, 8]

(b) [3, 4, 5, 6, 5, 6, 7, 7, 8]

(c) [3, 4, 5, 6, 7, 5, 6, 7, 8, 7, 8, 9, 9, 10]

(d) [3, 4, 5, 5, 6, 7, 6, 7, 8, 9, 7, 8, 9, 10]

6. What does the following list comprehension evaluate to?

[x+y for x in range(1,4) for y in range(2,6) if x < y]

(a) ['the', 'a', 'is', 'the', 'a', 'is', 'this']

(b) ['the', 'a', 'is', 'this']

(c) ['the', 'is', 'a', 'is', 'this']

(d) ['this', 'is', 'a', 'the', 'is', 'a', 'this']

7. What are the contents of lst at the end of the following program?

d = {'the': ['a', 'is'], 'a': ['is', 'this'], 'is': ['the', 'a']}
lst = ['the']
while lst[-1] in d:
 for w in d[lst[-1]]:
 lst.append(w)

(a) x in d / d[x] = x

(b) x not in d / del d[x]

(c) x in d.values() / d[x] = lst

(d) x in d.items() / d[lst] = x

8. The following method should return true iff the provided list lst contains any duplicate elements:

def has_repeats(lst):
 d = {}
 for x in lst:
 if ________________: #1
 return True
 else:
 ________________ #2
 return False

Which of the following correctly fill in blanks #1 and #2 (in that order)?

4 of 10

(a) {'c': 'a'}

(b) {'a': 'a', 'c': 'c'}

(c) {'b': 'b', ‘a': 'c'}

(d) {'a': 'a', 'c': 'b'}

9. Consider the following class definition and subsequent code:

class Bar:
 def __init__(self):
 self.data = {}

 def __getitem__(self, x):
 return self.data[x]

 def __delitem__(self, x):
 self.data[x] = x

 def __setitem__(self, x, y):
 self.data[x] = y

bar = Bar()
bar['a'] = 'b'
bar['c'] = bar['a']
del bar['a']

What are the contents of bar.data at the end of the program?

5 of 10

(a) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(b) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(c) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

(d) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

10. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate over its contents?

6 of 10

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of a method that uses binary search to determine if a given element is not in a sorted, array-
backed list of N elements?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of creating a new array-backed list that contains the elements of one array-back list followed by
that of another array-backed list, given that there are a total of N elements?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of deleting the last element (i.e., in the largest index) of an array-backed list of N elements?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of finding and removing the element with the minimum value from an unsorted array-backed list of
N elements?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst case time complexity of inserting an element into a sorted array-backed list of N elements, such that the list remains sorted
after insertion?

7 of 10

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

16. What is the worst-case runtime complexity of the following function?

def fA(N):
 lst = []
 for i in range(N):
 for _ in range(N):
 lst.append(i)
 return lst

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

17. What is the worst-case runtime complexity of the following function?

def fB(lst): # lst is a Python list of length N
 n = 1
 while lst[0] == lst[n]:
 n += 1
 return n

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

18. What is the worst-case runtime complexity of the following function?

def fC(lst): # lst is a Python list of length N
 n = 0
 uniques = []
 for x in lst:
 if x in uniques:
 n += 1
 else:
 uniques.append(x)
 return n

8 of 10

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

19. What is the worst-case runtime complexity of the following function?

def fD(N):
 res = 0
 for val in range(N // 1024):
 res = res + val
 return res

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

20. What is the worst-case runtime complexity of the following function?

def fE(N):
 res = 1
 while True:
 if N == 0:
 return res
 else:
 res = res * N
 N = N // 2

(a) self[i], self[i+1] = self[i+1], self[i]

(b) self[i], self[len(self)-i-1] = self[len(self)-i-1], self[i]

(c) self[len(self)-i], self[i] = self[len(self)-i-1], self[i-1]

(d) self[i+1], self[i] = self[i], self[i+1]

21. Which choice correctly completes the following method that reverses the contents of an array-backed list?

def reverse(self):
 for i in range(len(self) // 2):
 __

9 of 10

(a) for i in range(0, n):
self[i-1] = self[i]

(b) for i in range(0, len(self)):
 self[i-n] = self[i]

(c) for i in range(n, len(self)-1):
 self[i+1-n] = self[n]

(d) for i in range(n, len(self)):
 self[i-n] = self[i]

22. Which choice correctly completes the following method to delete the first n elements from an array-backed list?

def drop(self, n):

 for _ in range(n):
 del self.data[len(self)-1]

(a) for i in range(0, len(self)):
 if i+1 < len(self):
 yield self[i], self[i+1]

(b) for i in range(0, len(self), 2):
 if i+1 < len(self):
 yield self[i], self[i+1]

(c) for i in range(1, len(self), 2):
 yield self[i+1], self[i-1]

(d) for i in range(0, len(self)-2, 2):
 yield self[i], self[i+2]

23. Which choice correctly completes the following method that returns an iterator over successive, non-overlapping pairs of elements (as tuples)
from an array-backed list? (If there are an odd number of elements, the last element will be omitted.)

def pairs(self):

10 of 10

(a) while True:
 for i in range(len(self)):
 yield self[i]

(b) for i in range(len(self)):
 yield self[i]
 for j in range(len(self)):
 yield self[j]

(c) while True:
 j = 0
 for i in range(j, len(self):
 yield self[i]
 j += 1

(d) for i in range(len(self), -1, -1):
 for j in range(len(self)):
 yield self[j]
 yield self[i]

24. Which choice correctly completes the following method that returns an "infinite" iterator that repeatedly cycles through the elements of an
array-backed list, starting with the first?

def forever(self):

