
CS 331 Fall 2019

Midterm Exam 2

Instructions:

• This exam is closed-book, closed-notes. Calculators are not permitted.

• For numbered, multiple-choice questions, fill your answer in the corresponding row on the
“bubble” sheet.

• For problems that require a written solution (labeled with the prefix “WP”), write your
answer in the space provided on the written solution sheet. Please write legibly and clearly
indicate your final answer.

• Turn in the exam question packet, bubble sheet, and written solution sheet separately.

• Good luck!

Page 1 of 7



Concepts (24 points):

1. What is the primary reason we incorporated a sentinel node in our circular, doubly-linked
list implementation?

(a) to make it easier to locate the first element of the list

(b) to reduce the runtime complexity of the __getitem__ method (i.e., indexing)

(c) to make it possible to remove elements in O(1) time

(d) to reduce the number of edge cases we have to consider in our implementation

2. What is the worst-case runtime complexity of removing the first element (by index) in a
circular, doubly-linked list of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

3. Which of the following operations has slower worst-case runtime complexity in a linked-list,
compared to an array-backed list?

(a) locating an item by index (i.e., __getitem__)

(b) removing the first element (i.e., index 0)

(c) removing the last element (i.e., index -1)

(d) all the above operations have the same runtime complexity across the two implementa-
tions

4. Assuming uniform hashing, What is the probability of there being no collisions in a hashtable
with 1000 buckets and 5 total entries?

(a) 1 − 999
1000 × 998

1000 × 997
1000 × 996

1000

(b) 999
1000 × 998

1000 × 997
1000 × 996

1000

(c) 995
1000

(d) 5
1000

Page 2 of 7



5. What is the worst-case runtime complexity of determining whether a specified key exists in
a hashtable containing N key/value entries?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

6. To improve the performance of a hashtable, we could replace the linked list used to track
collisions within a given bucket with another nested hashtable, so that all keys that fall into
the same bucket are hashed yet again onto another set of buckets (which, this time, use
linked lists for collisions). What would be the worst-case runtime complexity for inserting a
key/value pair into a hashtable with this design containing N entries?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

7. Which of the following data structures maintains entries in first-in-first-out (FIFO) order?

(a) stack

(b) queue

(c) priority queue

(d) heap

8. In a queue implemented with a circular array of size N , where head and tail are associated
with the indices of the next element to dequeue and the most recently enqueued element,
respectively, which of the following expressions evaluates to True if and only if the queue is
full?

(a) (tail + 1) % N == head

(b) (head + 1) % N == tail

(c) tail % N == head - 1

(d) (head + N) % N == head

Page 3 of 7



9. In a singly-linked queue implementation, which of the following correctly implements the
enqueue operation when the queue is not empty?

(a) self.tail.next = Queue.Node(val, self.tail)

(b) self.tail = Queue.Node(val, self.tail)

(c) self.tail = self.tail.next = Queue.Node(val)

(d) self.tail.next = self.tail = Queue.Node(val)

10. Given an element with index i in the array-representation of a heap, which of the following
correctly computes the index of the left child of that element?

(a) (i + 1) // 2

(b) 2*i - 1

(c) (i + 1) % 2

(d) 2*i + 1

11. What is the worst-case runtime complexity of adding an element to an array-backed max-heap
of N elements and restoring the heap property?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

12. At most how many swaps would be needed to “re-heapify” a max-heap of 100 elements after
removing the maximum value?

(a) 3

(b) 7

(c) 12

(d) 18

Page 4 of 7



Linked Stack (8 points):

WP1 For this problem you are to implement the remove_all method for the singly-linked stack
implementation which, when called with some value val, will remove all instances of val from
the stack. The top of the stack will be adjusted, if necessary.

E.g., calling remove_all(9) from a stack with contents 9, 1, 9, 2, 3, 9, 4, 9, 9

(the top of the stack is the leftmost value shown) will result in the stack with contents
1, 2, 3, 4. remove_all should work correctly if the stack is empty, and may also leave the
stack empty.

Criteria:

• You should not call any other Stack methods

• You should not modify or add attributes to the Stack or Node classes

• You should not use any other data structures in your implementation (e.g., lists, dictio-
naries, etc.)

The base linked stack implementation is provided on the solution sheet for reference.

Page 5 of 7



Hashtable (8 points):

WP2 For this problem you are to implement the collision_ratio hashtable method, which
returns a number n in the range 0 ≤ n ≤ 1, computed as the fraction c

k , where c is the
number of buckets in the hashtable containing a collision, and k is the number of buckets in
the hashtable with at least one key/value entry.

E.g., in a hashtable with a total of 1000 buckets, where 50 buckets contain at least one
key/value entry, and of which 20 buckets contain two or more entries (i.e., a collision), the
method collision_ratio should return 20

50 = 0.4.

Criteria:

• You should not call any other Hashtable methods

• You should not modify or add attributes to the Hashtable or Node classes

• You should not use any other data structures in your implementation (e.g., lists, dictio-
naries, etc.)

The base hashtable implementation is provided on the solution sheet for reference.

Page 6 of 7



Heap (8 points):

WP3 (a) Consider the following ordered sequence of values to be added to a max-heap:

4, 6, 8, 3, 5, 7, 9

Sketch the heap after adding each value and re-heapifying.

WP3 (b) Consider the following max-heap:

10

8

1 5

4

3 2

Sketch the heap after removing the maximum value and re-heapifying until the heap is empty.
(I.e., show the updated heap after each value is removed.)

Page 7 of 7


