
(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

1. What is the time complexity for locating an element with a given value in a doubly-linked list of N elements sorted in
ascending order?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

2. What is the time complexity for popping off the first (i.e., oldest) element pushed onto a stack which contains N
elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

3. One way to reverse the sequence of elements in a queue would be to dequeue them and push them onto a stack
one by one, then pop all the elements off the stack while enqueueing them again. What would be the time
complexity of performing this sequence of operations with a queue of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

4. What is the time complexity of inserting a single element into a heap of N elements and ensuring that heap ordering
semantics are maintained?

CS 331 Midterm Exam 2
Friday, April 29, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’) on the answer sheet.

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

5. What is the time complexity of removing all elements in descending order from a heap containing N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

6. What is the time complexity for removing the root element from an unbalanced binary search tree containing N
elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

7. What is the time complexity for removing the root element from an AVL tree containing N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

8. What is the time complexity of fixing a “RL” imbalance in an AVL tree resulting from the addition of a new node?
(Ignore the time taken to actually locate the insertion spot for the node.)

(a) implementing heapsort

(b) implementing a priority queue

(c) permitting rapid access to the largest of a partially ordered set of elements

(d) maintaining a full ordering of elements across multiple insertions and deletions

9. Which of the following applications is a heap NOT particularly well suited to?

(a) a stack

(b) a queue

(c) a priority queue

(d) an AVL tree

10. Which of the following data structures is best suited for use in simulating a “fair”, first-in-first-out scheduling
system?

(a) 1

(b) 2

(c) 9

(d) 10

11. Consider the non-balanced binary search tree constructed from the following (ordered) sequence of values:

 9 10 8 1 3 2

What is the value stored in the root of the tree?

(a) 5

(b) 4

(c) 3

(d) 2

12. What is the height of the tree from problem (11)?

(a) Above node (1)

(b) As the right child of node (3)

(c) As the right child of node (2)

(d) As the left child of node (10)

13. If inserting the value 7 into the tree constructed in problem (11), where would it go?

(a) Set the left child of (9) to None

(b) Set the left child of (10) to None

(c) Set the left child of node (9) to node (1)

(d) Set the right child of node (1) to node (9), and make (1) the root of the tree

14. If deleting the value 8 from the tree constructed in problem (11), how should we best go about updating the tree?

(a) a left rotation about (4)

(b) a left rotation about (2)

(c) a right rotation about (4) followed by a left rotation about (2)

(d) no rotations are needed

15. Consider the following (ordered) sequence of values used to construct a binary search tree:

 2 4 3

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) a left rotation about (6)

(b) a right rotation about (4)

(c) a left rotation about (4) followed by a right rotation about (5)

(d) no rotations are needed

16. Consider the following (ordered) sequence of values used to construct a binary search tree:

 5 4 6

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) 2

(b) 3

(c) 4

(d) 6

17. Consider the balanced AVL tree constructed from the following (ordered) sequence of values:

 2 4 8 5 7 9

How many rotations were needed over the course of adding all the values to keep the tree balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 3 left rotations, 1 right rotation

(d) 2 left rotations, 4 right rotations

18. What types of rotations were performed while constructing the tree in problem (17)?

(a) 0

(b) 3

(c) 6

(d) 10

19. Which of the following values, if added to the tree constructed in problem (17), would require additional rebalancing
(through one or more rotations)?

(a) idx = (abs(idx) + self.count) % self.count)

(b) idx = idx + (-self.count)

(c) if idx < 0:
 idx = idx + self.count

(d) if idx < 0:
 idx = self.count - idx

20. Which of the following best translates a potentially negative index idx into a positive offset into a list data structure
(containing self.count elements), per Python’s regular array index semantics?

(a) n = self.head
while n:
 count += 1
 n = n.next

(b) n = self.head.next
while n is not self.head:
 count += 1
 n = self.head.next

(c) n = self.head.prior
while n is not self.head:
 count += 1
 n = n.next

(d) n = self.head.next
while n is not self.head:
 count += 1
 n = n.next

21. Which choice completes the following implementation of __len__ for a circular linked list, where self.head
refers to the sentinel head?

def __len__(self):
 count = 0

 return count

(a) yield self.head.next.val

(b) n = self.head.next
while n:
 yield n.next.val

(c) yield from self.head
while iter(self):
 yield n.val

n = next(self)

(d) n = self.head.next
while n is not self.head:
 yield n.val
 n = n.next

22. Which of the following implements a generator-based iterator for a circular linked list, where self.head refers to
the sentinel head?

(a) n = self.head.prior
while n.val != x:
 n.next = n.next
 n.prior = n.prior
 n = n.prior

(b) n = self.head.next
while n is not self.head:
 if n.val == x:
 n.prior.next = n.next
 n.next.prior = n.prior
 return
 n = n.next

(c) n = self.head.prior
while n is not self.head:
 if n.val == x:
 n.prior.next = n.next
 n.next.prior = n.prior
 return
 n = n.prior

(d) n = self.head.next
while n.val != x:
 n = n.next
while n is not self.head:
 if n.val == x:
 break
 n = n.next
n.prior.next = n.next
n.next.prior = n.prior

23. Given that self.head refers to the sentinel head link of a circular, doubly-linked list implementation, which choice
completes the following function so that it removes just the last occurrence of x from the list?

def remove_last(self, x):

(a) if c == pairs[stack.pop()]:
 return True

(b) if not stack:
 return False

(c) while stack.pop() != c
 if not stack:
 return False

(d) if not stack or c != pairs[stack.pop()]:
 return False

24. Which choice completes the following function so that it returns True only for strings that contain properly
balanced pairs of parentheses, brackets, and curly braces?

def check_parens(str):
 pairs = {'(': ')', '[': ']', '{': '}'}
 stack = Stack()
 for c in str:
 if c in pairs.keys():
 stack.push(c)
 elif c in pairs.values():

 if stack:
 return False
 else:
 return True

(a) val = self.data[self.head]
self.head -= 1
return val

(b) val = self.data[self.head]
self.head = (self.head + 1) % len(self.data)
return val

(c) val = self.data[self.head]
self.head = (self.head - 1) % len(self.data)
return val

(d) val = self.data[self.head]
self.head = self.tail - self.head + 1
return val

25. In a circular, array-backed queue implementation, which of the following implements the “dequeue” operation?
(Assume the queue is not empty)

(a) def del_max(self):
 for i in range(len(self.data)-1):
 self.data[i] = self.data[i+1]
 self._heapify(0)

(b) def del_max(self):
 self._heapify(len(self.data)-1)
 for i in range(len(self.data)):
 self.data[i] = self.data[i+1]
 del self.data[len(self.data)-1]

(c) def del_max(self):
 self.data[0] = self.data[len(self.data)-1]
 del self.data[len(self.data)-1]
 self._heapify(0)

(d) def del_max(self):
 self.data[0] = self.data[len(self.data)-1]
 del self.data[len(self.data)-1]
 self._heapify(len(self.data)-1)

26. Which of the following correctly removes the maximum value from a heap and re-establishes heap ordering
semantics? (Assume that the _heapify method works correctly as described in class, and is passed a starting
index.)

(a) def tree_size(t):
 if not t:
 return 0
 else:
 return 1 + tree_size(t.left) + tree_size(t.right)

(b) def tree_size(t):
 if not t:
 return count
 else:
 return tree_size(t.left) + tree_size(t.right)

(c) def tree_size(t, count=0):
 if not t:
 return count
 else:
 return tree_size(t.left, count+1) + tree_size(t.right, count+1)

(d) def tree_size(t, count=0):
 if not t:
 return count
 else:
 return tree_size(t.left, count) + tree_size(t.right, count+1)

27. Which of the following implements returns the total number of elements in a binary tree rooted at the node passed in
as the initial argument t?

(a) (BSTree.height(n.left) > BSTree.height(n.right)+1 and
 BSTree.height(n.left.left) > BSTree.height(n.left.right))

(b) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(c) (BSTree.height(n.left) > BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.left.right))

(d) (BSTree.height(n.left) > BSTree.height(n.right)+1 and
 BSTree.height(n.left.left) < BSTree.height(n.left.right))

28. Which of the following conditions returns true for a “LR” imbalance at node n in a binary search tree?

(a) def successor_rec(t):
 if x >= t.val and t.left:
 return successor_rec(t.left)
 elif x < t.val and t.right:
 s = successor_rec(t.right)
 if t.val > s:
 return t.val
 else:
 return s
 elif x < t.val:
 return t.val
 else:
 return None

(b) def successor_rec(t):
 if x >= t.val and t.right:
 return successor_rec(t.right)
 elif x < t.val and t.left:
 s = successor_rec(t.left)
 if s:
 return s
 else:
 return t.val
 elif x < t.val:
 return t.val
 else:
 return None

(c) def successor_rec(t):
 if x > t.val:
 return successor_rec(t.right)
 elif x < t.val and not t.left:
 return t.val
 else:
 return successor_rec(t.left)

(d) def successor_rec(t):
 if not t:
 return None
 return min(successor_rec(t.right),
 successor_rec(t.left))

29. Which of the following returns the successor of x from the binary search tree rooted at t, where the successor of a
value is defined as the smallest value larger than (but not equal to) that value? If no successor exists, None is
returned; the initial value of t is assumed to not be None.

(a) def fix_rr(t):
 l = self.left
 t.val, l.val = l.val, t.val
 t.left, l.left, t.right, l.right = l.left, l.right, l, t.right

(b) def fix_rr(t):
 r = t.right
 t.val, r.val = r.val, t.val
 t.left, r.left, t.right, r.right = r, t.left, r.right, r.left

(c) def fix_rr(t):
 l = self.left
 ll = self.left.left
 self.left = ll
 l.right, ll.left = ll.left, l

 r = self.right
 t.val, r.val = r.val, t.val
 t.left, t.right, r.left, r.right = r.left, r, r.right, t.right

(d) def fix_rr(t):
 r = t.right
 rr = t.right.right
 t.right = rr
 r.right, rr.left = rr.left, r

 r = t.right
 t.val, r.val = r.val, t.val
 t.left, r.left, t.right, r.right = r, t.left, r.right, r.left

30. Which of the following methods fixes a RR-imbalance in a tree about the node passed in as t?

