
(a) 1000N3

(b) 100000 logN +N2

(c)
3N

1000
�N

(d)
10N2 + 500N + 999

N

2

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d) O(N logN)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

7. What is the time complexity for inserting an item into an AVL tree?

(a) O(logN)

(b) O(N)

(c) O(N logN)

(d) O(N2)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a) O(logN)

(b) O(N)

(c) O(N logN)

(d) O(N2)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a) O(logN)

(b) O(N)

(c) O(N logN)

(d) O(N2)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a) H logH

(b) H2 � 1

(c) H2 � 2H

(d) 2H � 1

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

(a)

(b)

(c)

(d)

1. Which of the following specific run-time estimates would reduce to the highest run-time
complexity?

(a)

(b)

(c)

(d)

2. What is the time complexity for appending an element to the end of an array-backed list
of N elements?

(a)

(b)

(c)

(d)

3. What is the time complexity for removing an arbitrary element from an array-backed list of
N elements?

(a)

(b)

(c)

(d)

4. What is the time complexity for searching for an element in an unsorted array-backed list
of N elements?

(a)

(b)

(c)

(d)

5. What is the time complexity for retrieving the element in the middle of a doubly-linked list
of N elements?

(a)

(b)

(c)

(d)

6. What is the time complexity for removing the last element from a doubly-linked list of N
elements?

(a)

(b)

(c)

(d)

7. What is the time complexity for inserting an item into an AVL tree?

(a)

(b)

(c)

(d)

8. What is the run-time complexity of the following function?

def c1(N):
 ret = 1
 for i in range(N//2, N):
 ret *= i
 return ret

(a)

(b)

(c)

(d)

9. What is the run-time complexity of the following function?

def c2(N):
 count = 0
 for i in range(1, N+1):
 for j in range(1, i):
 if i % j == 0:
 count += 1
 return count

(a)

(b)

(c)

(d)

10. What is the run-time complexity of the following function?

def c3(N):
 x = 1
 q = N // 10
 while q > 0:
 x += 1
 q = q // 10
 return x

Part 1: Time Complexity

(a) 5 9 13 22

(b) 9 22

(c) 7 13 22

(d) 7 9 22

11. The following is the binary search implementation we came up with in class:

def binary_search(lst, to_find):
 def binary_search_rec(bot, top):
 if bot > top:
 return None
 mid = (bot + top) // 2
 if to_find == lst[mid]:
 return lst[mid]
 elif to_find < lst[mid]:
 return binary_search_rec(bot, mid-1)
 else:
 return binary_search_rec(mid+1, top)
 return binary_search_rec(0, len(lst)-1)

Given the call binary_search([2, 5, 7, 9, 13, 22], 22), which values (in
order) in lst are compared to to_find before returning from the call?

(a) [1, 6, 4, 3]
[1, 3, 6, 4]
[1, 3, 4, 6]

(b) [4, 6, 3, 1]
[3, 4, 6, 1]
[1, 3, 4, 6]

(c) [4, 3, 1, 6]
[3, 4, 1, 6]
[1, 3, 4, 6]

(d) [6, 4, 3, 1]
[3, 1, 6, 4]
[1, 3, 4, 6]

12. The following is the insertion sort implementation we came up with in class:

def insertion_sort(vals):
 for j in range(1, len(vals)):
 to_insert = vals[j]
 i = j - 1
 while i >= 0 and vals[i] > to_insert:
 vals[i+1] = vals[i]
 i -= 1
 vals[i+1] = to_insert

When called with the array [6, 4, 3, 1], what are the contents of vals at the end of
each outer for loop?

Part 2: Searching & Sorting

(a) for i in range(len(self.data)-1, idx, -1):
 self.data[i-1] = self.data[i]

(b) for i in range(idx):
 self.data[i] = self.data[i+1]

(c) for i in range(0, idx-1, 1):
 self.data[i+1] = self.data[i]

(d) for i in range(idx, len(self.data)-1):
 self.data[i] = self.data[i+1]

13. Which of the following correctly “removes” the element at position idx from an array-
backed list?

(a) self.data[self.tail] = x
self.tail = (self.tail % len(self.data)) + 1

(b) self.data[self.tail] = x
self.tail = len(self.data) + 1 - self.tail

(c) self.data[self.tail] = x
self.tail = (self.tail + 1) % len(self.data)

(d) self.data[self.tail] = x
self.tail = (len(self.data) + 1)) % len(self.data)

14. In a circular, array-backed queue implementation, which of the following appends x to the
tail of the queue and correctly advances the tail index? Assume the queue is not full.

(a) for i in range(self.tail):
 yield self.data[i]

(b) for i in range(self.count):
 yield self.data[(self.head + i) % self.tail]

(c) for i in range(self.count+1):
 yield self.data[self.head + i]

(d) for i in range(self.count):
 yield self.data[(self.head + i) % len(self.data)]

15. In a circular, array-backed queue implementation, which of the following can be used as
the body of a generator-based __iter__ method? Assume that self.count denotes
the number of elements in the queue, and self.head is the index of the head element.

(a) return self.inbox.pop()

(b) self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(c) while self.inbox:
 self.outbox.push(self.inbox.pop())
return self.outbox.pop()

(d) while self.inbox:
 self.outbox.push(self.inbox.pop())
while self.outbox:

self.inbox.push(self.outbox.pop())
return self.inbox.pop()

16. In a dual-stack (referenced by outbox and inbox) backed queue implementation, which
of the following deals with the scenario when the outbox is empty when attempting to
dequeue?

Part 3: Array-Backed List, Stack and Queue

(a) p = self.head
while p.next.next is not to_rem:
 p = p.next
p.next = p.next.next

(b) to_rem.next = to_rem.next.next
self.head = to_rem

(c) p = self.head.next
while p is not to_rem:
 p = p.next
p = p.next

(d) p = self.head
while p.next is not to_rem:
 p = p.next
p.next = p.next.next

17. Given that to_rem refers to a node in a singly-linked (i.e., nodes contain only next, and
not prior, references) list, and self.head refers to the sentinel head, which of the
following removes to_rem from the list?

(a) l = LinkedList.Link(x, prior=self.head, next=self.head.next)
self.head.next.prior = l
self.head.next = l

(b) l = LinkedList.Link(x, prior=self.head.prior, next=self.head)
self.head.prior = l
self.head.next = l

(c) self.head.next = LinkedList.Link(x, prior=self.head,
next=self.head)

(d) l = LinkedList.Link(x, prior=self.head, next=self.head)
self.head.prior.next = l
self.head.next.prior = l

18. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following prepends x to the beginning of the list?

(a) count = 0
n = self.head.next
while n.next is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(b) count = 0
n = self.head.next
while n is not self.head:
 if x == n.val:
 count += 1
 n = n.next

(c) count = 0
n = self.head.next
while n is not self.head and n.val != x:
 count += 1
 n = n.next

(d) count = 0
n = self.head
while n.next is not self.head:
 if x == n.val:
 count += 1
 else:
 n = n.next

19. Given that self.head refers to the sentinel head link of a circular, doubly-linked list
implementation, which of the following sets count to the number of times x appears in the
list?

(a) n1.prior = n2
n2.next = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior.next = n2
n2.next.prior = n1

(b) n1.prior.next.prior = n2
n2.next.prior.next = n1
n1.prior = n2
n2.next = n1

(c) n2.prior = n1.prior
n1.prior.next = n2

n1.next = n2.next
n2.next.prior = n1
n1.prior = n2
n2.next = n1

(d) n1.prior.next = n2
n2.next.prior = n1
n2.prior = n1.prior
n1.next = n2.next
n1.prior = n2
n2.next = n1

20. Given that n1 and n2 refer to successive nodes (other than the sentinel) within a circular,
doubly-linked list implementation, which of the following swaps their positions?

Part 4: Linked List

(a)

(b)

(c)

(d)

21. What is the maximum number of values that can be stored in a binary search tree with a
height of H?

(a) def count_of(x, n):
 if not n:
 return 0
 elif x >= n.val:
 return 1
 else:
 return count_of(x, n.left)

(b) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return 1 + count_of(x, n.right)
 elif x < n.val:
 return count_of(x, n.left)
 else:
 return count_of(x, n.right)

(c) def count_of(x, n):
 if not n:
 return 0
 elif x < n.val:

 return count_of(x, n.left)
 elif x > n.val:
 return count_of(x, n.right)
 else:
 return 1

(d) def count_of(x, n):
 if not n:
 return 0
 elif x == n.val:
 return count_of(x, n.left) + count_of(x, n.right)
 elif x < n.val:
 return -1
 else:
 return 1

22. Which of the following returns the number of occurrences of element x in the binary
search tree rooted at node n (assuming that duplicate elements are possible)?

For the remaining problems in this part of the exam, consider the non-balanced binary
search tree constructed from the following (ordered) sequence of values:

 10 15 8 5 6 20

(a) 5

(b) 8

(c) 10

(d) 20

23. What is the value stored in the root of the tree?

(a) 5 6 8 10 15 20

(b) 8 10 5 15 6 20

(c) 10 8 5 6 15 20

(d) 20 15 10 8 6 5

24. In what order are the values visited in a pre-order traversal of the tree?

(a) 5 6 8 15 20 10

(b) 6 5 8 20 15 10

(c) 8 5 6 15 20 10

(d) 20 15 10 8 6 5

25. In what order are the values visited in a post-order traversal of the tree?

(a) 4

(b) 3

(c) 2

(d) 1

26. What is the height of the tree?

(a) Above node (8)

(b) As the right child of node (6)

(c) As the right child of node (8)

(d) As the left child of node (10)

27. If inserting the value 9 into the tree, where would it go?

(a) Set the right child of node (8) to node (15), and make (8) the root of the tree

(b) Set the value of node (10) to 20, and set the right child of (15) to None

(c) Set the left child of node (20) to node (8), and make (20) the root of the tree

(d) Set the value of node (10) to 6, and set the right child of (5) to None

28. If deleting the value 10, how should we best go about updating the tree?

Part 5: Binary Search Tree

(a) left rotation about node (5)

(b) right rotation about node (20)

(c) left rotation about node (15), followed by a right rotation about (20)

(d) no rotations are needed

29. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 20 15 5

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) left rotation about node (5)

(b) left rotation about node (12)

(c) right rotation about node (12), followed by a left rotation about node (5)

(d) no rotations are needed

30. Consider the following (ordered) sequence of values used to construct a binary search
tree:

 5 12 8

What sequence of rotations (if any) would be required to balanced the resulting tree?

(a) r = t.root.right
l = t.root.left
t.root = BSTree.Node(l.val, left=r, right=l)

(b) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l.left, right=r)
r.left = l.right

(c) r = t.root
l = t.root.left
t.root = BSTree.Node(l.val, left=l, right=r)
r.right = l.left

(d) r = t.root.right
l = t.root
t.root = BSTree.Node(r.val, left=r, right=r.right)

31. Which of the following implements a right rotation around the root of a binary search tree
referred to by t?

(a) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) < BSTree.height(n.right.right))

(b) (BSTree.height(n.left) < BSTree.height(n.right)+1 and
 BSTree.height(n.right.left) < BSTree.height(n.right.right)+1)

(c) (BSTree.height(n.left) >= BSTree.height(n.right) and
 BSTree.height(n.right.left) <= BSTree.height(n.right.right))

(d) (BSTree.height(n.left)+1 < BSTree.height(n.right) and
 BSTree.height(n.right.left) > BSTree.height(n.right.right)+1)

32. Which of the following conditions returns true for a “RR" imbalance at node n in a binary
search tree?

For the remaining problems in this part of the exam, consider the balanced AVL tree
constructed from the following (ordered) sequence of values:

 1 2 3 4 5 6

(a) 6 5 3 4 2 1

(b) 4 2 1 3 5 6

(c) 2 3 1 4 5 6

(d) 1 2 3 4 5 6

33. In what order are the values visited in a pre-order traversal of the tree?

(a) 0

(b) 3.5

(c) 4.5

(d) 5.5

34. Which of the following values, if added to the tree, would require additional rebalancing
(through one more more rotations)?

(a) 2

(b) 3

(c) 4

(d) 6

35. How many rotations were needed over the course of adding all the values to keep the tree
balanced?

(a) 2 right rotations

(b) 3 left rotations

(c) 2 left rotations, 2 right rotations

(d) 3 right rotations, 3 left rotations

36. What types of rotations were performed?

Part 6: Balanced Binary Search Tree (AVL Tree)

CS 331 Midterm Exam 2
Friday, December 4th, 2015
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in
your student ID number (without the leading ‘A’) on the answer sheet.

