Runtime Complexity

L CS 331: Data Structures and Algorithms
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So tar, our runtime analysis has been
based on empirical evidence

— 1.e., runtimes obtained from actually
running our algorithms
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But measured runtime is very sensitive to:
- platform (OS/compiler/interpreter)
- concurrent tasks

- implementation details (vs. high-level
algorithm)
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And measured runtime doesn’t always
help us see long-term / big picture trends
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Reframing the problem:

Given an algorithm that takes mput size n,
we want a function 7{n) that describes the
running time ot the algorithm
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imput size might be the number of items in the
iput (e.g., as 1n a list), or the magnitude of
the input value (e.g., for numeric input).

an algorithm may also be dependent on
the size of more than one input.
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def sort(vals):
# dnput size

def factorial(n):
# dinput size

def gcd(m, n):
# dinput size

len(vals)

(m, n)
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runming time 1s based on # of primitwe

operations (e.g., statements, computations)
carried out by the algorithm.

1deally, machine independent!
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def factorial(n): cost  times

prod = 1 c1 1

for k in range(2, n+1): c2 n—1
prod *= k c3 n—1

return prod c4 1

T(n)=c1+(n—1)(co+c3) +c4

Messy! Per-instruction costs obscure the
“big picture” runtime function.
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def factorial(n): times

prod = 1 1

for k in range(2, n+1): n—1
prod *= k n—1

return prod 1

Tn)=2(n—1)4+2=2n

Simplification #1: 1ignore actual cost of
each line of code.
Runtime 1s linear w.r.t. Input size.
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Next: a sort algorithm — wmsertion sort

Inspiration: sorting a hand of cards
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B ].
| | e ST
insertion: [2, 3, 5, 1, 4]

def dinsertion_sort(lst):
for i 1in range(l, len(lst)):
for j 1in range(i, 0, -1):
if 1st[j] < lst[j-1]:

Ist[j], lst[j-1] = 1st[j-1]1, 1lst[j]

else:
break
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def dinsertion_sort(lst): fumes
for i in range(l, len(lst)): n—1
for j 1in range(i, 0, -1): ?
if Ust[j] < lst[j-1]:
Ust[j], lst[j-1] = lst[j-1], lst[j]
else:
break

SR Ol & )

»’s will vary based on 1nitial “sortedness”
... useful to contemplate worst case scenario
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def dinsertion_sort(lst): fumes

for i in range(l, len(lst)): n—1
for j in range(i, 0, -1): ?
if lst[j] < lst[j-1]: 2
lst[j], lst[j-1] = lst[j-1], lst[j].. ?
else: ?
break ?

worst case arises when list values start out
1N reverse order!
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def dinsertion_sort(lst): fumes
for i in range(l, len(lst)): n—1

for j in range(i, 0, -1): 1

if Ust[j] < lst[j-1]: ]

lst[j], lst[j-1] = lst[j-1]1, lst[j]. 1

else: 0

break 0

worst case analysis — this 1s our default
analysis hereafter unless otherwise noted
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Review (or crash course) on arnthmetic series

e.g., | +2+3+44+5 (=1))

Sum can also be found by:
- adding first and last term (1+5=6)
- dividing by two (find average) (6/2=3)
- multiplying by num ot values (3X5=1J)
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: n(n + 1
1.€., 1+2+---+n:2t: ( ; )
t=1
— (n—1)n
and 1+2+---+(n-1)=) t= ;
t=1
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def 1dinsertion_sort(lst):

for i 1in range(1l, len(lst)): n—1
for j in range(i, 0, -1): 1,2, .., (n—1
if lst[j] < Ust[j-1]: 1,2, ..., (n—1
Ust[j], lst[j-1] = lst[j-1], lst[jl.. 1,2,...(a—1)
else: 0
break 0
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def 1dinsertion_sort(lst):

for i 1in range(1l, len(lst)): n—1
for j in range(i, 0, -1): ot
if Ust[j] < lst[j-1]: nlt
Ist[j], lst[j-1] = 1st[j-1], lst[j] nlt
else: 0
break 0
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def insertion_sort(lst): lumes

for i 1in range(1l, len(lst)): n—1
for j in range(i, 0, -1): (n—1)n/2
if Ust[j] < lst[j-1]: (n—1)n/2
Ist[j], lst[j-11 = Ust[j-1]1, lst[jl.. (n—1)n/2
else: 0
break 0
3(n—1)n
T(n)=(n-—1)- ( )
2
2n —2+3n*—-3n 3 , n
= = —-n"——=-—1
2 2
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T(n):%nz—g—l

1.e., runtime of 1nsertion sort 18 a quadratic
function of 1ts input size.

Simplification #2: only consider leading
term; 1.e., with the fughest order of growth

Simplification #3: ignore constant coefficients
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T(n):g@—g—1

... we conclude that insertion sort has a
worst-case runtime complexity of n?

we write: T'(n) = O(n?)

read: “1s big-O ot
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formally, f(n) = O(g(n))

means that there exists constants ¢, 1

such that 0 < f(n) < c- g(n)

for all n > ng
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Le., f(n) =0(g(n))

intuitively means that g (multiplied by a

constant factor) sets an upper bound on f

as n gets large — 1.e., an asymptotic bound
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cg(n)

f(n)

n
Mo

f(n) = 0(gn))
(from Cormen, Leiserson, Riest, and Stein, Introduction to Algorithms)
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technically, f = O(g) does not imply a
asymptotically #ght bound

e.g., n = O(n?) is true, but there is no
constant ¢ such that ¢n? will approximate

the growth of n, as n gets large
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but 1n this class we wi// use big-O notation
to signity asymptotically tight bounds

1.e., there are constants c1, ¢2 such that:
c1g(n) < f(n) < cag(n),for n > ng

(there’s another notation: © — big-theta

— but we’re avoiding the formalism)
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asymptotically tight bound: g “‘sandwiches” f

28 (n)

J(n)

c1g(n)

Mo

(from Cormen, Leiserson, Riest, and Stein, Introduction to Algorithms)
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So far, we've seen:
- binary search = O(log n)
- factorial, linear search = O(n)

- insertion sort = O(n?)
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def quadratic_roots(a, b, c):
discr = b**2 - 4*a*c
if discr < 0O:
return None
discr = math.sqrt(discr)
return (-b+discr)/(2*a), (-b-discr)/(2*a)
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def quadratic_roots(a, b, c):
discr = b**2 - 4*a*c
if discr < 0O:
return None
discr = math.sqrt(discr)
return (-b+discr)/(2*a), (-b-discr)/(2*a)

Always a fixed (constant) number of LOC

executed, regardless of input.

— 0
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def quadratic_roots(a, b, c):
discr = b**2 - 4*a*c
if discr < 0O:
return None
discr = math.sqrt(discr)
return (-b+discr)/(2*a), (-b-discr)/(2*a)

Always a fixed (constant) number of LOC

executed, regardless of input.

T(n) = C = O(1)
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def foo(m, n):
for _ 1in range(m):
for _ 1in range(n):
pass
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def foo(m, n):
for _ 1in range(m):
for _ 1in range(n):
pass

= O(mxn)
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def foo(n):
for _ 1in range(n):
for _ 1in range(n):
for _ 1in range(n):
pass
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def foo(n):
for _ 1in range(n):
for _ 1in range(n):
for _ 1in range(n):
pass
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Cij = Gioboj + @i1b1j + -+ + Qinbn,

1.e., for nX n input matrices, each result

cell requires n multiplications
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def square_matrix_multiply(a, b):

dim = len(a)

c = [[0] * dim for _ 1in range(dim)]

for row in range(dim):

for col in range(dim):
for i in range(dim):
c[row][col] += a[row][i] * b[i][col]
return c

= O(dim?)
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using “brute force” to 0
| - 0(7)
crack an n-bit password
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1 character (3 bits) -
(28 possible values)

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111
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using “brute force” to .
! — 0(2")
crack an n-bit password
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Name

Class Example

Constant

O(1) Compute discriminant

Logarithmic [O(log n) |Binary search

Linear

n) Linear search

Linearithmic | O

og n) |Heap sort (coming!)

Insertion sort

Cubic

Polynomial |O

Generally, ¢ nested loops over n items

Exponential |0

(
(
(
Quadratic | O(
(
(
(

1
)
n3) Matrix multiplication
)
)

Brute forcing an n-bit password

Factoral

O(n!) “Traveling salesman” problem

Common order of growth classes
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