Runtime Complexity

L CS 331: Data Structures and Algorithms

ﬁ,//' IIT College of Science

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

So tar, our runtime analysis has been
based on empirical evidence

— 1.e., runtimes obtained from actually
running our algorithms

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

But measured runtime is very sensitive to:
- platform (OS/compiler/interpreter)
- concurrent tasks

- implementation details (vs. high-level
algorithm)

i,' IIT College of Science
/' \LLinois INSTITUTE OF TECHNOLOGY

And measured runtime doesn’t always
help us see long-term / big picture trends

ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Reframing the problem:

Given an algorithm that takes mput size n,
we want a function 7{n) that describes the
running time ot the algorithm

i,' IIT College of Science
/' \LLinois INSTITUTE OF TECHNOLOGY

imput size might be the number of items in the
iput (e.g., as 1n a list), or the magnitude of
the input value (e.g., for numeric input).

an algorithm may also be dependent on
the size of more than one input.

i,' IIT College of Science
/' \LLinois INSTITUTE OF TECHNOLOGY

def sort(vals):
dnput size

def factorial(n):
dinput size

def gcd(m, n):
dinput size

len(vals)

(m, n)

\

.
13
N

4

= |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

runming time 1s based on # of primitwe

operations (e.g., statements, computations)
carried out by the algorithm.

1deally, machine independent!

ﬁ.{-‘,’ IIT College of Science

,// ILLINOIS INSTITUTE OF TECHNOLOGY

def factorial(n): cost times

prod = 1 c1 1

for k in range(2, n+1): c2 n—1
prod *= k c3 n—1

return prod c4 1

T(n)=c1+(n—1)(co+c3) +c4

Messy! Per-instruction costs obscure the
“big picture” runtime function.

ﬁf:'.-' IIT College of Science

!// ILLINOIS INSTITUTE OF TECHNOLOGY

def factorial(n): times

prod = 1 1

for k in range(2, n+1): n—1
prod *= k n—1

return prod 1

Tn)=2(n—1)4+2=2n

Simplification #1: 1ignore actual cost of
each line of code.
Runtime 1s linear w.r.t. Input size.

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Next: a sort algorithm — wmsertion sort

Inspiration: sorting a hand of cards

ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

B].
| | e ST
insertion: [2, 3, 5, 1, 4]

def dinsertion_sort(lst):
for i 1in range(l, len(lst)):
for j 1in range(i, 0, -1):
if 1st[j] < lst[j-1]:

Ist[j], lst[j-1] = 1st[j-1]1, 1lst[j]

else:
break

4
»
-."

\

/

IIT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

def dinsertion_sort(lst): fumes
for i in range(l, len(lst)): n—1
for j 1in range(i, 0, -1): ?
if Ust[j] < lst[j-1]:
Ust[j], lst[j-1] = lst[j-1], lst[j]
else:
break

SR Ol &)

»’s will vary based on 1nitial “sortedness”
... useful to contemplate worst case scenario

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

def dinsertion_sort(lst): fumes

for i in range(l, len(lst)): n—1
for j in range(i, 0, -1): ?
if lst[j] < lst[j-1]: 2
lst[j], lst[j-1] = lst[j-1], lst[j].. ?
else: ?
break ?

worst case arises when list values start out
1N reverse order!

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

def dinsertion_sort(lst): fumes
for i in range(l, len(lst)): n—1

for j in range(i, 0, -1): 1

if Ust[j] < lst[j-1]:]

lst[j], lst[j-1] = lst[j-1]1, lst[j]. 1

else: 0

break 0

worst case analysis — this 1s our default
analysis hereafter unless otherwise noted

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Review (or crash course) on arnthmetic series

e.g., | +2+3+44+5 (=1))

Sum can also be found by:
- adding first and last term (1+5=6)
- dividing by two (find average) (6/2=3)
- multiplying by num ot values (3X5=1J)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

: n(n + 1
1.€., 1+2+---+n:2t: (;)
t=1
— (n—1)n
and 1+2+---+(n-1)=) t= ;
t=1

ﬁi’.’ IIT College of Science
/' \Linois iNsTiTUTE oF TeCHNOLOGY

def 1dinsertion_sort(lst):

for i 1in range(1l, len(lst)): n—1
for j in range(i, 0, -1): 1,2, .., (n—1
if lst[j] < Ust[j-1]: 1,2, ..., (n—1
Ust[j], lst[j-1] = lst[j-1], lst[jl.. 1,2,...(a—1)
else: 0
break 0

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

def 1dinsertion_sort(lst):

for i 1in range(1l, len(lst)): n—1
for j in range(i, 0, -1): ot
if Ust[j] < lst[j-1]: nlt
Ist[j], lst[j-1] = 1st[j-1], lst[j] nlt
else: 0
break 0

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

def insertion_sort(lst): lumes

for i 1in range(1l, len(lst)): n—1
for j in range(i, 0, -1): (n—1)n/2
if Ust[j] < lst[j-1]: (n—1)n/2
Ist[j], lst[j-11 = Ust[j-1]1, lst[jl.. (n—1)n/2
else: 0
break 0
3(n—1)n
T(n)=(n-—1)- ()
2
2n —2+3n*—-3n 3 , n
= = —-n"——=-—1
2 2

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

T(n):%nz—g—l

1.e., runtime of 1nsertion sort 18 a quadratic
function of 1ts input size.

Simplification #2: only consider leading
term; 1.e., with the fughest order of growth

Simplification #3: ignore constant coefficients

ﬁ,' IIT College of Science
/' \LLinois INSTITUTE OF TECHNOLOGY

T(n):g@—g—1

... we conclude that insertion sort has a
worst-case runtime complexity of n?

we write: T'(n) = O(n?)

read: “1s big-O ot

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

formally, f(n) = O(g(n))

means that there exists constants ¢, 1

such that 0 < f(n) < c- g(n)

for all n > ng

ﬁf//' IIT College of Science

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Le., f(n) =0(g(n))

intuitively means that g (multiplied by a

constant factor) sets an upper bound on f

as n gets large — 1.e., an asymptotic bound

i,' IIT College of Science
/' \LLinois INSTITUTE OF TECHNOLOGY

cg(n)

f(n)

n
Mo

f(n) = 0(gn))
(from Cormen, Leiserson, Riest, and Stein, Introduction to Algorithms)

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

technically, f = O(g) does not imply a
asymptotically #ght bound

e.g., n = O(n?) is true, but there is no
constant ¢ such that ¢n? will approximate

the growth of n, as n gets large

i,' IIT College of Science
/' \LLinois INSTITUTE OF TECHNOLOGY

but 1n this class we wi// use big-O notation
to signity asymptotically tight bounds

1.e., there are constants c1, ¢2 such that:
c1g(n) < f(n) < cag(n),for n > ng

(there’s another notation: © — big-theta

— but we’re avoiding the formalism)

i,' IIT College of Science
/' \LLinois INSTITUTE OF TECHNOLOGY

asymptotically tight bound: g “‘sandwiches” f

28 (n)

J(n)

c1g(n)

Mo

(from Cormen, Leiserson, Riest, and Stein, Introduction to Algorithms)

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

So far, we've seen:
- binary search = O(log n)
- factorial, linear search = O(n)

- insertion sort = O(n?)

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

def quadratic_roots(a, b, c):
discr = b**2 - 4*a*c
if discr < 0O:
return None
discr = math.sqrt(discr)
return (-b+discr)/(2*a), (-b-discr)/(2*a)

ﬁf:'.-' IIT College of Science

!// ILLINOIS INSTITUTE OF TECHNOLOGY

def quadratic_roots(a, b, c):
discr = b**2 - 4*a*c
if discr < 0O:
return None
discr = math.sqrt(discr)
return (-b+discr)/(2*a), (-b-discr)/(2*a)

Always a fixed (constant) number of LOC

executed, regardless of input.

— 0

ﬁf:'.-' IIT College of Science

!// ILLINOIS INSTITUTE OF TECHNOLOGY

def quadratic_roots(a, b, c):
discr = b**2 - 4*a*c
if discr < 0O:
return None
discr = math.sqrt(discr)
return (-b+discr)/(2*a), (-b-discr)/(2*a)

Always a fixed (constant) number of LOC

executed, regardless of input.

T(n) = C = O(1)

ﬁf:'.-' IIT College of Science

!// ILLINOIS INSTITUTE OF TECHNOLOGY

def foo(m, n):
for _ 1in range(m):
for _ 1in range(n):
pass

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

def foo(m, n):
for _ 1in range(m):
for _ 1in range(n):
pass

= O(mxn)

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

def foo(n):
for _ 1in range(n):
for _ 1in range(n):
for _ 1in range(n):
pass

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

def foo(n):
for _ 1in range(n):
for _ 1in range(n):
for _ 1in range(n):
pass

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Cij = Gioboj + @i1b1j + -+ + Qinbn,

1.e., for nX n input matrices, each result

cell requires n multiplications

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

def square_matrix_multiply(a, b):

dim = len(a)

c = [[0] * dim for _ 1in range(dim)]

for row in range(dim):

for col in range(dim):
for i in range(dim):
c[row][col] += a[row][i] * b[i][col]
return c

= O(dim?)

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

using “brute force” to 0
| - 0(7)
crack an n-bit password

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

1 character (3 bits) -
(28 possible values)

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

\

y

.
13
N

= IIT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

using “brute force” to .
! — 0(2")
crack an n-bit password

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Name

Class Example

Constant

O(1) Compute discriminant

Logarithmic [O(log n) |Binary search

Linear

n) Linear search

Linearithmic | O

og n) |Heap sort (coming!)

Insertion sort

Cubic

Polynomial |O

Generally, ¢ nested loops over n items

Exponential |0

(
(
(
Quadratic | O(
(
(
(

1
)
n3) Matrix multiplication
)
)

Brute forcing an n-bit password

Factoral

O(n!) “Traveling salesman” problem

Common order of growth classes

\

7

4
»
n.'.

IIT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

