from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
import time
time.time()
1757511707.1047459
import time
time.time()
1757511715.5001187
from time import time, sleep
start = time()
sleep(1)
end = time()
print(end - start)
1.01558518409729
start = time()
sum(range(10**6))
end = time()
print(end - start)
499999500000
0.05842185020446777
from time import time, sleep
def myTimer(f):
start = time()
f()
end = time()
return end-start
print(myTimer(lambda: sum(range(10**6)) ))
0.04969072341918945
from timeit import timeit
timeit(lambda: sum(range(10**6)))
--------------------------------------------------------------------------- KeyboardInterrupt Traceback (most recent call last) <ipython-input-5-c797700594a6> in <module> 1 from timeit import timeit ----> 2 timeit(lambda: sum(range(10**6))) ~\anaconda3\lib\timeit.py in timeit(stmt, setup, timer, number, globals) 231 number=default_number, globals=None): 232 """Convenience function to create Timer object and call timeit method.""" --> 233 return Timer(stmt, setup, timer, globals).timeit(number) 234 235 def repeat(stmt="pass", setup="pass", timer=default_timer, ~\anaconda3\lib\timeit.py in timeit(self, number) 175 gc.disable() 176 try: --> 177 timing = self.inner(it, self.timer) 178 finally: 179 if gcold: ~\anaconda3\lib\timeit.py in inner(_it, _timer, _stmt) KeyboardInterrupt:
from timeit import timeit
timeit(lambda: sum(range(10**6)),number=10)
0.4911172999999849
timeit(setup='import random; lst=[random.random() for x in range(100)]',
globals=globals(), number=100, stmt='sorted(lst)')
# globals allows timeit to reference any variables from the jupyter notebook
0.001134700000079647
lst = [0] * 10**5
import timeit
timeit.timeit(stmt='lst[0]', globals=globals())
0.07848869999997987
timeit.timeit(stmt='lst[10**5-1]', globals=globals())
0.07104440000000523
times = [timeit.timeit(stmt='lst[{}]'.format(i),
globals=globals(),
number=100)
for i in range(10**5)]
times[:10]
[2.779999999802385e-05, 2.880000010918593e-05, 2.5400000026820635e-05, 1.44999999065476e-05, 1.4000000078340236e-05, 1.3899999999011925e-05, 1.4500000020234438e-05, 1.4100000043981709e-05, 1.3899999999011925e-05, 1.4299999975264654e-05]
%matplotlib inline
import matplotlib.pyplot as plt
plt.plot(times, 'ro')
plt.show()
Observation: accessing an element in a list by index takes a constant amount of time, regardless of position.
How? A Python list uses an array as its underlying data storage mechanism. To access an element in an array, the interpreter:
Task: to locate an element with a given value in a list (array).
def index(lst, x): # we want to return index position
# therefore we need an index on our loop (NOT for z in lst)
for i in range(len(lst)): # i is valid indexs in the lst
if lst[i]==x:
return i
# if we exit the loop, thats a not found
raise ValueError(x)
lst = list(range(100)) # values match the index
index(lst, 10)
10
index(lst, 99)
99
index(lst, -1)
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-25-893b85c8f574> in <module> ----> 1 index(lst, -1) <ipython-input-22-e2a6a9e220c1> in index(lst, x) 5 return i 6 # if we exit the loop, thats a not found ----> 7 raise ValueError(x) 8 ValueError: -1
import timeit
lst = list(range(1000))
times = [timeit.timeit(stmt='index(lst, {})'.format(x),
globals=globals(),
number=100)
for x in range(1000)]
import matplotlib.pyplot as plt
plt.plot(times, 'ro')
plt.show()
Task: to locate an element with a given value in a list (array) whose contents are sorted in ascending order.
def index(lst, x):
# assume that lst is sorted!!!
# find mid index as (startIndex+endIndex)//2
# startIndex and endIndex define the range of the current problem
startIndex=0
endIndex=len(lst)-1
while (startIndex <=endIndex): # I stillhave items I have not checked yet
# print(startIndex, " ", endIndex)
midIndex=(startIndex+endIndex)//2
if lst[midIndex]==x:
return midIndex
elif lst[midIndex]<x: # i can elimiate the left part and work on the right part
startIndex=midIndex+1
else: # i can elimiate the right part and work on the left part
endIndex=midIndex-1
# do it again
raise ValueError(x)
lst = list(range(1000)) # list index value is equal to the actual value
# lst is sorted
index(lst, 10)
0 999 0 498 0 248 0 123 0 60 0 29 0 13 7 13
10
index(lst, 999)
0 999 500 999 750 999 875 999 938 999 969 999 985 999 993 999 997 999 999 999
999
index(lst, -1)
0 999 0 498 0 248 0 123 0 60 0 29 0 13 0 5 0 1
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-37-893b85c8f574> in <module> ----> 1 index(lst, -1) <ipython-input-34-2cae5ffd9499> in index(lst, x) 16 endIndex=midIndex-1 17 # do it again ---> 18 raise ValueError(x) 19 ValueError: -1
import timeit
lst = list(range(1000))
times = [timeit.timeit(stmt='index(lst, {})'.format(x),
globals=globals(),
number=1000)
for x in range(1000)]
import matplotlib.pyplot as plt
plt.plot(times, 'ro')
plt.show()
def index(lst, x):
# assume that lst is sorted!!!
# find mid index as (startIndex+endIndex)//2
# startIndex and endIndex define the range of the current problem
startIndex=0
endIndex=len(lst)-1
while (startIndex <=endIndex): # I stillhave items I have not checked yet
# print(startIndex, " ", endIndex)
midIndex=(startIndex+endIndex)//2
if lst[midIndex]==x:
return midIndex
elif lst[midIndex]<x: # i can elimiate the left part and work on the right part
startIndex=midIndex+1
else: # i can elimiate the right part and work on the left part
endIndex=midIndex-1
# do it again
# raise ValueError(x)
return None
import timeit
times = []
for size in range(1000, 100000, 100):
lst = list(range(size))
times.append(timeit.timeit(stmt='index(lst, -1)',
globals=globals(),
number=1000))
import matplotlib.pyplot as plt
plt.plot(times, 'ro')
plt.show()
# plotting not found on larger and larger lists
# faster than linear logarithmic
import timeit
times = []
for e in range(5, 20):
lst = list(range(2**e))
times.append(timeit.timeit(stmt='index(lst, -1)',
globals=globals(),
number=100000))
import matplotlib.pyplot as plt
plt.plot(times, 'ro')
plt.show()
# x axis is growing exponential 2^e, the runtime is growing linear
#therefore the binary search index is logarithmic
Task: to sort the values in a given list (array) in ascending order.
import random
lst = list(range(1000))
random.shuffle(lst)
import matplotlib.pyplot as plt
plt.plot(lst, 'ro')
plt.show()
[<matplotlib.lines.Line2D at 0x2221a106a00>]
def bubble_sort(lst):
# outer loop "to" range len(list)-1 downto 1
# inner loop does the bubble from item 0 to item "to"
# if the two items I am looking at are out of order, swap
for to in range(len(lst)-1, 0, -1):
for i in range(0, to): # final index is "to"-1
if (lst[i]>lst[i+1]):
lst[i],lst[i+1]=lst[i+1],lst[i]
bubble_sort(lst)
plt.plot(lst, 'ro')
plt.show()
[<matplotlib.lines.Line2D at 0x2221a4608e0>]
import timeit
import random
times = [timeit.timeit(stmt='bubble_sort(lst)',
setup='lst=list(range({})); random.shuffle(lst)'.format(size),
globals=globals(),
number=1)
for size in range(1, 5000, 200)]
plt.plot(times, 'ro')
plt.show()
[<matplotlib.lines.Line2D at 0x2221a51edc0>]
times # bubble sort experimental is n^2
[5.099999725644011e-06, 0.007293099999969854, 0.021216999999978725, 0.0326521000001776, 0.05546830000002956, 0.0846345999998448, 0.12189660000012736, 0.16511300000001938, 0.22187490000032994, 0.2814578000002257, 0.34926809999979014, 0.4388603000002149, 0.5755694999998013, 0.6070758000000751, 0.6781385999997838, 0.7580864999999903, 0.8719178000001193, 0.9870993999998063, 1.085393099999692, 1.244017100000292, 1.374317300000257, 1.539512299999842, 1.5970680999998876, 1.7979765999998563, 1.9815366000002541]
import random
lst = list(range(1000))
random.shuffle(lst)
def insertion_sort(lst):
# for every item from 1 to len(lst)-1
# walk it down
for i in range(1, len(lst)):
j=i
while j>0 and lst[j-1]>lst[j]:
# on sorted data, inner loop never entered linear growth
# on random data, quadratic growth (n^2)
# on reverse sorted, insertion sort does the most amount of work
# quadratic growth (n^2)
lst[j],lst[j-1]=lst[j-1],lst[j]
j-=1
insertion_sort(lst)
plt.plot(lst, 'ro')
plt.show()
[<matplotlib.lines.Line2D at 0x2221a5d5b80>]
lst
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]
import timeit
import random
times = [timeit.timeit(stmt='insertion_sort(lst)',
setup='lst=list(range({})); random.shuffle(lst)'.format(size),
globals=globals(),
number=1)
for size in range(1, 5000, 200)]
plt.plot(times, 'ro')
plt.show()
[<matplotlib.lines.Line2D at 0x2221a630ac0>]
for i in range(10): # to see if I can break a range
print(i)
if i==5:
i=9
0 1 2 3 4 5 6 7 8 9
def bubble_sortImproved(lst):
# outer loop "to" range len(list)-1 downto 1
# inner loop does the bubble from item 0 to item "to"
# if the two items I am looking at are out of order, swap
# for to in range(len(lst)-1, 0, -1):
to=len(lst)-1
while to>0:
for i in range(0, to): # final index is "to"-1
if (lst[i]>lst[i+1]):
lst[i],lst[i+1]=lst[i+1],lst[i]
lastSwap=i+1
to-=1
if lastSwap<to:
to=lastSwap
# this version has special case
# already sorted is linear growth O(n)
# but everything else is O(n^2)
import random
lst = list(range(1000))
random.shuffle(lst)
bubble_sortImproved(lst)
plt.plot(lst, 'ro')
plt.show()
[<matplotlib.lines.Line2D at 0x2221a69e700>]
import timeit
import random
times = [timeit.timeit(stmt='bubble_sortImproved(lst)',
setup='lst=list(range({})); random.shuffle(lst)'.format(size),
globals=globals(),
number=1)
for size in range(1, 5000, 200)]
plt.plot(times, 'ro')
plt.show()
[<matplotlib.lines.Line2D at 0x2221a6f94f0>]