
Modeling Computation
CS 330 :Discrete structures

How dome model (describe computation ? limits of
and µ computation

whatarethewmitsfifaruptothesemoddsfohsaiptw.us !

abstract machines (automata
-mathematical formula

← languages States Yo transition .

functions "

natural
" finite-state

machinesf. ↳
regulafaugoagesprogramming tuning(context-free) (regexps) machines

we can use a language to write down programs and express computations
- ni es , we mostly care about languages uf well- defined syntax

syntax : rules that describe what valid sentences look like

in the associated language .

the mechanism we might use to define or recognise a language says
a lot about its complicity - and the complexity of the type of
computation the language canbe used to express !

one

way
to describe a formal language is up a grammar

a grammar Cy = (V ,T,
s
,p) consists of :

V
,
the vocabulary : a non

-empty set of symbols .

TC V : the set of terminalYs cannot be rewritten as othergyms .

S E V : the start symbol
V-T = N : the set of

non-terminal symbols
P : a setof productions

Teach production is a " rewrite rule" of form LHS→rHs ;
LHS & RHS consist of symbols , and LHS contains
at least one non-terminal .

e.

g. , use the following grammar to generate some sentences :
V = { C

,
)
,
E }

T= { C , 73
epsilon : empty string .S = E

P = G E → EE ,
E → (E)

,
E→#

I
. E ⇒ e =

" "

2
. E ⇒ CE) ⇒ (CE))⇒ ((e)) ⇒ (C))
3 . E ⇒ EE ⇒ (E) E ⇒ (e) E⇒ () (E)⇒ C)(e) = C) C)

the language generated by grammar G
= (V ,T , s , p) , denoted LLG),

is the set of all strings of terminals that can be derived from S :

j
'

Kleene star
"

L (G) = { w ET
* / s E w }
/ T

w is derivable from S
set of all finite-length strings
over non- terminals

e.

g. , what is an interesting characteristic ofthe language generated
by this grammar ?

✓ = { o
,
I
,
A
,
B } T= { o , I }

S = A
←

shorthand for A→ OA
,
A -7113 , A

→ E

P = { A→ OA l l B l E , B→ OBI IA }
A-⇒ OA ⇒ 00A⇒ 00 ; A⇒ 1B ⇒ IOB

⇒ 101A ⇒ lol i

A-⇒ IB⇒ I IA⇒ l l lB⇒ 111013⇒ 1110013⇒ 111001A⇒ 111001

even # of Is ! "even painty
"

Noam Chomsky created a classification system for formal grammars
in 1956 .

Chomsky hierarchy :

type O : unrestricted

type l :
context sensitive

types
: context free

type3 : regular

tencuts)E kn LRHs)
,
and

+ypo (unrestricted) : no restrictions on grammar f ly replacement of A up8
depends on context

type (context-sensitive) : productions have form aAp→a8ps ,
where

A is a non-terminal and a ,Gilare strings of terminalsthou-terminals (8non-empty) .
←

LHS has no context

type2(context -free) : productions have form A→a ,where A is a
non- terminal and x is a string of terminals/non

- terminals .

type3 (regular) : [right regular] : productions have form A→aB or A→a ;
[left regular] : productions have form A→ Ba or A→a , where A,B

are non- terminals , and a is a terminal symbol (orE)

e.g , what types of grammars are the following?

Gi : V= { C ,) , E} F- { 4) } 5-E

p-- E E→EEYE}_ stringof non-terms (notregular)
#context

.

Gz : V = { o , I , A ,B} T = { 0 , I } 5- A G, is context free
F- {A→ OAIIBIE , B→ 01311A }

-

- in

Form A la le
Gsis n'ghtreguear

43 : V= { 0 , 1,2 , A , B,C} F- {o, 1,2 } S= A Gz is context-sensitive
D= { A→ OBA2 I 012 , BO→ OB , Bl → l l } -

← 9
LHS has context

,
and bututs)Ekncrtls)

e.g, what language is generated by Ep ?

Gsi. V= { 0 , I , 2, A , B,C} F- {0, 1,2 } S= A
D= { A→ OBA2 I 012 , BO→ OB , B l

→ l l }

ex l : A ⇒ 012

exz : A ⇒ OBA2 ⇒ OBOBA-22 ⇒ OBOB01222

⇒ 00131301222 ⇒ 00BOB 1222 ⇒ 00013131222

⇒ 00013 I 1222 ⇒ 0001 I 1222

493) = { 04
"

z
" I n z I }
[
string of n consecutive

O 's

As an alternative to usinga generating grammar to specify a language ,
we can design an automaton (abstract machine) that recognizes/
accepts only those strings in a language .

- deciding whether we can / how hard it
is to recognise

strings of a given language is amajor area of theoretical CS
(also : are languages recognised by different automata the same ?)

language (and the grammars that generate them) can alsobe classified
by the automata capable of recognizing them :

finite stale automata can recognise regular languages

pushdowu automata can recognize context-free languages
linear-bounded automata can recognize context -sensitive languages
Turingmachines can recognize languages generated by any formal grammar

a (deterministic) finite-stale automaton (DFA) M = (s,I ,f, so ,F)
consists of :

S : a finite set of states
←

assigns a
"next" state to

I : a finite set of input symbols every
combination of

f : the transition function f. s×I→ s
stale 4 uipat

So ES : the startstate

FE S : the final/acceptingStates

we can represent DFAS using stale-transition diagrams :

S :{So ,S, ,52,53}
I :{ 0,13

EIEso.si) is %

+.

"" .

a DFA M= (s
,
I ,f, so ,F) canbe run on an input string

i
, iz . . . in

,
where ike I by starting at state so and moving

through subsequent stales t . ,ta , . . . ,tu where tj = f (tj , , ij)

- an mint string is accepted by the DFA if ten EF
- the language recognised by the DFA - L(m)- is the
set of all strings accepted by M
- two DFAs are equivalentif they recognize the same language .

e.g. , does this
DFA accept each of the following strings?

O

is a
O O O

start→ so→ s,→ Sz→ S3

←g ←

1
.
O l

Z
.
OO O l

3 .

l l l O l

4 .
OO O O O O

O O

5
.
I O O O 00 I

e.g. , what language is recognized by this DFA ?

O

↳a
staff→ so Si

g

L(m) = set of all sitstrings of even pointy (even# of lis)

e.g. , construct a DEA for the language of intstrings that
begin up two O's and end up two O's .

O

→oo→oo→&ao⇒⑤
* . g.
¥

e.

g. , can you construct a TEA that recognises the language
↳ { on In I n z I 3 ?

→oesoo-soesoeoesoi.BE
I

→oesrmj.jo

pumping lemma : for any language L that can be recognised bya DFA ,
we

can find some integer p st. for any stringt E L , where tenLt)z p
we can break t into substrings urw where :

- ku (ur) E p
- ten (v) Z l

- f n Z O , uv
"
W E L
in

i.e.
,
in a sncticieutty long string , we can repeat
some middle portion as manytimes as we
want to get more strings in L

prove the pumping lemma .

-must show that foraccepted string x=Ww oftotal length p ,
✓ can be repeated to generate more accepted strings

←
can repeatthis loop- consider a TEA Np States : and still end

My
¥ . . . ④ . . .

.
. .

L

W

-Mnet ta at least one repeated fate ! call't Sr
- so# Sr consumes u, Sr#Sr consumes V

,
and

Sr sp-i consumes
W

e.

g. , can you construct a TEA that recognises the language
↳ { on in l n z I } ?

by pumping lemma , if we have a sufficiently long string wi L,
we can repeat some middle portion as many times as we want
to get more strings in L .

e 'g - 000 00O l l l . . -

l l l

--
no middle portions can be arbitrarily repeated !

L is not recognizable bya DFA .
L is not a regular language .

to recognizemore complex languages we need automatons up
more memory t more freedom to read/writethatmemory
- pulldown automata are likeDFAs ,

but can use

a stack to help decide whattransitions totake

-Turing machines can access an infinite amount of
memory

in arbitrary order to determine the progression
through its stales
- mostgeneral model ofcomputation !

That's all
,
folks !
-

