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I

a graph consists ofanoueouptysrtofvertiuslakanodes)V, and
a set of edges E- that describe connections between pairs of vertices
- we typically draw graphic using

" dots and lines" notation

e.g .
a

•
•

b

• C

•

e
• d mole : same as {d. b }

✓ = {a. b. c.die } f (order doesn'tmatter) .

- sometimes written

E- = {{a ,b 's ,{ beef ,{bid } ,{eid } } Lb -dy

g- CHE)



✓
" digraph " - rs . undirected graph

in a directed graph , edges are ordered pairs ( ie , order matters)
-we draw such graphs using arrows to indicate the direction .

e.g. ,
a
•→•

b

t g
.

I do
L

V = { a , b ,
c
,
d
,
e g#

distinct edges
- sometimes written

E- = {Ca, b) , lb ,e) , (c ,d) , Cd,& Lc→d> , Ld⇒c>

G= (Vi E)



- an edge that connects a venue to itself is a loop e.g .
③ of

- a graph that permits multiple edges between the e.

g .
and f

same nodes is a multigraph . m
.

O
↳

- a graph that contains me loops and
is uotamult-gaph

is a simple graph
- in this class when we were the term

"

graph
"

,
we will mean

" undirected simple graph
"

(there is no real consensus on graph
terminology/notation wi the wild)



- two vertices inagraphareadiaceutiftheyareconnededbyanedge
- an edge is incident with the vertices that it connects .

- the degree ofaverkxisthe number of edges incident
with -

it .

e.g .

a•-•b adjacent vertices : atb ,btc,btd,ctd

# degla) -- I

•→
deg (b) =3

d c degli)=degLd)=2



"

Handshaking
"
theorem : given a graph G

-

- CV,E) ,

-¥degH= Hel
e.g .

.

sum ofdegrees= It3+3+2+1=10

IET = 10/2=5



a subgraph of Ef (V,E) is a graph tf (w ,F) where
w EV and FEE .

a subgraph of G = Cv ,E) indef v
'
EV is the

graph G
'
= (V '

,
E
') ,
where E

'
contains only edgesfrom

E

that connect pairs of vertices in V
'



e.g. ,
draw three distinct subgraphs of G=(YE) , where

V -- Ea , b.c.d } , E- {sa-b>ka-c>Rb -c>Kd-at}
"

•µ/
a.

If
a.

µ
d •

• c • c d •
• c



SFEAALGRAPHSI circuit

complete graph
SUBGRAPHS nZ3 vertices v.Navas , . . ..vn ,

has an edge between
edges Krrkkk-us," .# vis}

wuypairofvertius empty graph .:④:
•

•
9.045.4 wedges

•

O

(aka "dique"aeasubgraph) .
•

bipartite graph• •

ifitsrertiuscanbepanituinedintoline (path sets v.
'

3.Vast. every edge connectsnzzveniceeviikihs , . . -Nui

avertexfromvitoavertexfmmvzedgesfdi-VDKVz-VD.n.kn.TV) }

- wow
, ÷:÷÷ . . ÷

.



what do we model using graphs ?

- computer networks
- transportation networks
- molecular structures

- social networks

- circuit layouts
- resource /scheduling interdependencies
- and much , much more !



e.

g .
can any two modes

in this network communicate ?

a b •

• O

f
.

•
•

.TT/ FO
•

•

wkrieded in the connectedness of the graph
(not in this

- is there a path between any two modes ? example ! )



e.

g . how robust
are these networks to failure ?

- i.e .
,
how many modes / edges do we have to remove to
disconnect the remaining nodes ?

'

looking for outrages of thegraph .



e -g . . are the pairs of graphs blow the same (after some stretching/
compressingtwisting ,

but without adding1removing verticesledges) ?
•→

a b a •@ ad ⑨ ⑨
C d ⑥ B ⑨ ⑨t.IE e . Id
.
o. . I

d e Da Da#

question of graph isomorphism
applications wi chemistry - are two molecules up the same formula

structurally identical ?

chip fabrication /optimization - is a particular layout
of components equivalent tothe original
schematic ?



e.g. ,
in the U.S.

.
do men or women

,
on average, have more

opposite-sex partners ? (only consideringheterosexual relationships)
- Laumannetal@Vchicago.l994 : men have 74% more opposition patrons
Men women because only considering opposition partners :
I → deglv) -- LEI
•= → ¥mmdegG)=¥women
•E -• IEI

* ⇒
a

:*:!T:¥±
'
in:*

• To it for women

might ÷ w;mm:÷i¥mim"⇐ i.oak:g÷i÷:)



e.

g. ,
can the following circuit schematic be redrawn wi such
a
way so that none of the wires (edges) overlap ?

f . • d
a. ! I &

µq.µ• • • •

h b
e f g h

c
•-•

e

- goal : piano in of a graph
- useful wi manyother problems i e.g., layout of transportation

networks (roadfrail )



e.g. , how many separatetimeslots
do we need to avoid

any
final exam scheduling conflicts , given that the graph
below aeutaiusedgesbctweeaalldassesuf overlapping
student enrollment ?

ztimedotsare sufficient

as.ie#.cs35L/ "

graphadoriuejpmblemo.no?#-$ecs33lfwmmnud%FTmoA4•bBto•br
a planar graph .••€s33FmYY.sn?ffi8mysosgibutodokoethan3



Other common graph representations t.AM#Ms:foreadevenex,ust
all adjacentvertices

e.g., given
a
•
e'

•
b a b. c.e T
ez bµ;ggd good when

e.
•

a matrix reps
are

•

• a d b
sparsed e a

z.AM#x:mij=lifedge3.in#nx:mij--tifedgejCvi-Vj> exists
,
0 otherwise

is incident nfverlexi , 0 otherwise

a
- g

b
,

od e

bmoi : :p: :i÷÷÷÷÷,
e ( O O O O



Isomorphism

graphs G ,
= (V.

,
E ) and Epe (Vz ,E) are isomorphic if there is

a bijection f : V,→Vz ,
such that :

tf u , w E Vi , edge (u- w) E E, if tfcu)-ftw)) C-Ez



a b

e.g. are q , -_µ•I
and Ga -

-

w

:§f×y isomorphic ?

• • c

Gi=(Vi -- {a.bad} , E. {La-b>Rb-4,617 , Ida>f )
GE (V2={w.x.yiz3.E-kw-yky-xlkx-z7.cz-WH)

function f : V. →Vz , where : f- (a) = w

{ f-(b) = y
Thes my.tt#nue.ded

f- (c) =x Yes -

f-(d) =z isomorphic .



e.g. , are q ,
=!T¢b and Ga -

-

w

4144g isomorphic ?

• • c

No ! Bijection between vertices mustalsogenius Injection
between edges . IE , IF¥4 ,

so no bijection is possible .



the test algorithms for determiningif two graphs are isomorphic
have exponential worst oak runtime complicity- however

,

the graph isomorphism problem is not in NP-complete .

* As of 2017 , Vasz to
' Babai @ VChicago claims to have

shown graph isomorphism can be solved in quasi-polynomial
time - i.e.

,
204 log n)9

** open source program
" NAUTT

"

can test mostgraphs

up vertices < too for isomorphism in L l second



All graph properties we care about are preserved under isomorphism !

e-

g
- a

.

ok f i

e
. on:*.
d j

are structurally/ semantically equivalent
where all graph

properties and algorithms are concerned .



Connectivity
- a graph is connected if there is a path between every pair of vertices
- a connected component of a graph is a subgraph consisting of
some vertex and all vertices and edges counseled to it

.

-
: a graph is connected if it was a single connected component .

- a cut vertex ( out edge (aka .
articulation point/bridge) ,when

removed from a graph , leaves more connected components than before
(it disconnects the graph)



e.

g. for each graph , determine the number of connected components
and identify out vertices (edges , if they exist .

⑥ 5
•

a

17¥
-

:*s .
.

.

0

I
.

÷*n÷d
.



a graph G is k-vertex-connected if it has at least k vertices
and removing any fewer than K vertices does not disconnect it .

- the redox connectivity K (G) is the max k s.t. G fgkq.FI?Ya?nnis K- vertex-connected T
Kappa

-denoted kn
,

define
a graph G is K

-

edge - connected if removing any fewerthan
HK) -- O,
K(Ku).- n- I

k edges does not disconnect it

- the edge connectivity NG) is the max K et. G
is k-edge-connected & lambda



(e.g , there are
e.g- determine k(G) and d(G) for each graph blow program,ffm )

÷ o. t.I.n.TL
.

EYE:3
'Etat:3 IEEE's IEEE .

I
.

son
o , EX
1497-2 Hq)=z K(G)=3
NG)=2 Ng)=3 NG)=3



Cyraphtraversals elsewhere

path
←

"walk
"

- a inagraphofkugthkaonsisofasyuenuof vertices
and edges {vo.eiih.ez.be , . - sik} where ei=(vi. Vil
←

"closed walk
" elsewhere

- acirairtisapaththatetahsaudeadsouthesaenevehex
- ausimpwpathfiraritdoee.net contain duplicate edges

9"

trailfoircuit
" elsewhere (

also .- elsewhere
"

path
"
- no

repealed edgesfvehices , and
"

cycle
"
-

- a'rointufwo repeated
edgy vertices

)



"

Bridges of kiinigsbog
" (1736)

¢¥¥E¥¥¥
\#¥#¥##⇐

Euler :
"
can we start atsome location , traverse all bridges once ,
and end up where we

started ?
"



"

Bridges of kiinigsbog
" (1736)

fE¥#⇒¥¥•

EI\#¥④¥¥¥⇐
Euler :

"
can we start atsome location , traverse all bridges once ,
and end up where we

started ?
"



for graph G
-

- Lv ,E) :

- au Euler path is a path thattraverses every eEE once
-

an Euler circuit is athat traverses every eEE once

- what conditions are necessary /sufficient fora connected

graph to have an Eulerpath/a'rain ?



e.g. construct an Enter circuit .

startled
••←-••

µ µ degrees of all vertices are every

orexin
T

→•←-• •
-

treasury
condition !

avenue , ¥49 also sufficient
button't •

••
-

forweoywodedhwthanstah-iuexhelastom.memust leave after entering
must leave

after
- for staff node , we must re-entervisiting .
+ notkaveatsomepointlbut

(whataboutEuler paths ?)
can revisit as needed)



for graph G
-

- Lv ,E) :

- a Hamiltonian path is a path that visits everyVEV once
-

a Hamiltonian circuit is a circuitthat visits once

y
this makesit Mutt harder !



snfiaiutaeudit.ws?tntnotmassang!e8../!.y
germaine .

-

yqiswm.in?ni.Dirac's theorem :iflVlZ3audfwEVdegw)ZNI
then Ghasatfanieltoniau circuit

2

Ore's theorem : if WIZ 's and Hu,wEVKu-w)¢E
→ deglu)tdeglw)ZH) , then 4
hasatfaimltomair circuit

- nokaown necessary
condition's for Hamiltonian oiraiitslpaths .



the Traveling salesperson problem Gsp) is the problem of
finding a Hamiltonian circuit in a weighed graph- ie,one where
a numerical "cost" (weight) is assigned to each edge- where

the sum of edge weights in the circuit is minimind .



Both the Hamiltonian circuitproblem (Hop) andTsp are
NP-hard problems .

- how many Hamiltonian
circuits might need to be considered

to solve the TSP wi a complete graph M n vertices ?

G-z) distinct circuits - ie,brute force approach EO(n !)
- dynamic programming can find exact answer in 0622

")
- approximation algorithms can find a solution for millions of
nodes in short time Min 3% of precise answer (mostof time)



instead of a droit, we often just care about the dronedpath
from a given node to some other node wi a weighted graph

e.g. , shortest path from Chicago→
Miami

↳ LA
↳

. . .



Dijkstra's algorithm is an algorithm for findingthe shortest path
distances in graph G

-
- (V ,E) up weights wLu , r) > o for all

edges Lu -v> E E ,
from some staff nodet :

s ← $ relax (u, v ) :
forall u EV : if Ku)twCu ,v) e LG) :
Hu)←x Iv) = In)tw(u ,v)

Lt)← o
white st v :

find node u Cf s up minimum L(u)
s ← s u { u}
for all nodes vet s adjacent to u :

relax ( u , v)



e.g . use Diivotrals algorithm to find the shortest paths starting
from node A in the following graph :

Bt
'

5- { A , B ,c , D }
3TH
..A •

II 4/3
¥



e.g . use Digicams algorithm to find the shortest paths starting
from node A in the following graph :

04 47 S={ A,B ,D , C ,E }
B 3

D

• •

4

a .
10

•

z

•

E
¥
, Ky
9/8 10



Runtime complexity ?EO(ls←$
foralluev :

- canbroptimizdto
Hu)←x octettlvlloglvl)

Lt)←o
←

lvlitratuins
winks # V :

at most N- I
find nodeucfsufminimwmtlu)←(cantnoptimindnsing ,
s←sU{ u} e.g. heap)
for all nodes vets adjacent ton :

relax (un ) ← atmootlvtl
(founded by # t )



Graph coloring
- a coloring of a graph is an assignment of a colorto each

vertex s .t . no adjacent Vertex has the same color
- a graph that allows a coloring M K colors is

" K-adorable"

- the chromatic number X(G) of graph G is the least#
of colors needed to colorthegraph took over too years to

prove ! And only D
* for any planar graph G , HG) E4 Laanstance of computer-

assisted checking of n2000
cases . Still no computer-
unassisted proof .



"

greedy
"

basiccoloring algorithm for graph G = (VE) :
I . choose some ordering of vertices in V :

VI
,
V2
,

- .
.

,
Vu

z order the colors : C , , Cz , . - .

3 . for i = I , 2, . . .

,
n
, assign Vi the lowest possible color

(ie, st . , no adjacent vertices havethesame color)



e.

g. , apply the basic adoringalgorithm to this map:

e.g.
A B C D E

colors ..
It

"M

e.g .
E D c B A

.!§ B

mkjrF9qrFhtf¥n7f
any map



e.

g. ,
how many colors ,

atmost
,
does the basic coloring algorithm

assign to each of the following graphs ?

Et Et ÷÷¥¥
Z 5 Z Z

- this basic algorithm seems to do pretty well , regardless of
ordering !



e.g . give an example of
a graph G for which thebasic adoring

algorithm may assign substantiallymore colors than X(G) .

•

1¥ colors assigned ,

÷÷÷¥¥€÷: mm :



HI -- n and

conjecture : given graph G
-

- (Vi E) where
"
twEV

, degCw) E K ,
the basic coloring algorithm assigns at most ktl colors to 4

PM : (show PLD n Pln)→ plate )) - what is predicate P ?

basis : Pll) = graph M Nfl : Fw EV , deg (w)= O , need Ott colors ✓

inductive sleep : assume PG) is true ( ht.)

for Platt ) , let Cy = ( v , E) up N I = ntl , and fw EV , deg(w) Ek
order nodes in V as wi , wa , . . .

,
Wn ,wut l

--

by htt . , we know that this subgraph
requires atmost KH colors



✓
n nodes , KH colors

*
Max degree K

""

.

. .

because this node has atmost k neighbors (uf
K distinct colors)

,
F colorE {c , ,ez , . . . Ceti} that we

can assign to wut I
- : pcu) →plat D V

QED .



in general , findingthe chromatic number of a graph is NP-hard
*

- beet algorithms have exponential runtime complicity .

deciding whether a graph is k
-adorable for k>2 is NP-complete

(except for some paid cans
-

e .g., z- coloring
- O(N IHED

k>3 for planar graphs )


