
Discrete probability
CS 330 :Discrete structures



"

probability
"

: doun) the extent to which an event is likely
to occur

,
measured by the ratio of the

favorable cases to the whole numberof
cases possible (New Oxford AmericanDictionary)



experiment : a procedure that yields one of a setofpossible outcomes
e.g., rolling a six-sided die

sample space : the set of possible outcomes

e.g. ,
I
,
2

.
3 , 4 ,

5
, 6

event : a subset of the sample space
e.g. , rolling a 2 , rollingan even#

probability of an event E : PCE) = ¥4 , given sample space S

e.g , pl rolling an even# up a six-sided die) = 3-6 = I



e.g. ,
odds of winning Mega- Millions jackpot

⑤
- fine numbers wi range I-70 (no duplicates ,order doesn'tmatter)
- l number in rangel

-W ( "Megatall
") #mmbus must

match
.

ISI = ( Ff) . 25 = 302, 578, 350

odds of winning = zoz,¥s0



¥:
e.g. , probability of having a full house after being BBE

dealt fine cards from a regular deck of playing
cards ?

1st = (E) = 2,598,960 www.forpqysuihfor
← 4 suits

pair X B ranks

x
-

(full houses( = 13 . (g) . 12 . (4) = 3,744 52 cards

9
ranks fortriple Fruits fortriple

p(full house) =q%Yf÷= 0.00144 20.144%



A

twopai.
9¥

e.g. probability of having after tniug BE

dealt fine cards from a regular deck of playing
cards ?

Hwopairsl-B.LI) ' " ' ' l' (4)
= 123,552
-

Z ← because orderof pairs doesn't matter !

P(two pairs) = 123,552
(division rule)

- 24.75%
4598,960



sum rule :

if Ei and Ez are disjoint events , pCE , U Ez) = PLED tpCE),
and generally , for pairwise disjoint events Ei , Ez, . . .

,
En
,

P ( If Ei) -- Ea PCEi)



complement rule :

if E is an event in the sample space S , p(
E) = I - p(E)



e.g. , p( rolling anything otherthan
a7 up two 6- sided dice) ?

I - p(rolling a 7)

= I - I Edie) , (45) ,G.4) 143), (5,4 , (6,1) } )
-

6. 6

= I -
I
6

= I
6



e.g. , prob
'

ability of being dealt a 5-card hand that
contains at least one Ace ?

( hands who Aae I = (F)

plhand up at least one Aa) = I
- (F
e.i



e.g. ,
" deal or nodeal , CS 330 edition

"
:

¥÷i¥÷¥¥

- 9 empty suitcases , l M $1 , ooo , ooo .

- youpick a suitcase at the start of class

- every 10 minutes I reveal one of the suitcases (other
than the one you picked ) to ta empty , until there are2 left

.

- at any point you
can choose a suitcase and leave up its contents .



e.g. ,
" deal or nodeal , CS 330 edition

"
:

is it worth waiting for me to reveal 8 suitcases to be

empty . or do you have the same odds of leaving up
$1 M if you choose early ?

definitely worth waiting ! lo vs. 2 sitcoms topick from !



e.g. ,
" deal or nodeal , CS 330 edition

"
: (Monty Hall

XXX problem)

after I've revealed the 8th empty suitcase , do you persist
in opening the sitcan you picked initially , ordo you switch ?
(are the odds of leaving up $1Many different ?)

switch ! P(originalpick = slim)= to p(switchpick --$1M) --%



conditional probability :

if E and F are events ul p(F) > o , the probability
of E given that F has already occurred ( ire , probability
of E conditioned on F) is :

P( El F) = PELF
)

PLF)



e.g. , a best- of three tournament, the IIT women's soccer teamIvins the firstgame up probability I . The proto-ability of winning
any following game is :

5- if the preceding game was won , and

↳ , if the preceding game was
lost

.

what is the probability that we won the tournament, given
that we won the first game ?
E = we won the tournament , F =we won the first game
PCE IF) = PCE

n f)
-

PCF)
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e.g, consider a con'd-19 test with a 3% false negative rate , and
a 30% falsepositive rate . lie. ,

- if you have con'd -19 ,
there is a 3% chance theist says you

don't

-if you
don't have avid -19

,
there is a 30% chance the test says you

do

assuming aninfedien rate of 5% , how accurate
is the test ?

i.e.
, if E is the event that someone has covid-19 , and

F- is the event that the testis positive , what is PCEIF) ?

healthy • sick

o.es# PCEIF)= NEAFL

testy- testiest - PCF)

•

0.3 0.7
• •

0.970.03
• =0.0485-214.5%0.2850.665 0.0485 0.0015

0.0485+0.285



e.g. ,
based on the preceding example , if the women's soccer
team won the tournament

,
what is the likelihood that they

won the first game ?

fromTufan ,
E = won tournament ,

F -- won first game ,

PCE tf) = I

now we want PEIE)←"
a posteriori" probability (EaffYE , )

aaioutional probability p (Eff) = Plenty
PE)

Pettet- N¥I=HE¥¥# --IE -

- F



Bayes
' Rule :

if E and F are events where PCE) > o and pCF)> o ,

p(Eff) = PHE)p#
Ptt)

uitirpnetations (philosophical) : e.g. , E
= has could

F -- positivetest

Bayesian
- we arecomputing a

"

degree ofbelief
"

← pLele) tells me how nicelyin proposition E given evidence F it is you
have conD

Frequentist - we are measuring the relative # ← youeither
hare covets or not,

of outcomes in which events E 'T F OUW tht this describes the
population at large



Bayes
' Rule (extended form) :

F

Bayes
' PCEIF)=pCFIE)HE)- e

PLF)

know that PCH =p# E) TPLFAE)

by conditionalprobability : PenE) =p#E) PCE)

PCFAE) =p (FIE) PCE )

" PCEIF)=PCfk⇒pC#
PCHEIPCEHPCHEJPCE)



e.g., consider a avid
- 19 test with a 3% false negative rate , and

a 30% falsepositive rate . lie. ,

- if you have con'd -19 ,
there is a 3% chance the test says you

don't

-if you
don't have avid - 19

,
there is a 30% chance the test says you

do

assuming an infection rate of 5% , how accurate
is the test ?

E = someone has covid- 19

F = test is positive , using

PCEIF) = PCHE)P(# 69716.0572
PHIE) P(E)+ PCH E) PCE )

=

(0.97)(o.o5) Ho .3) (o . 95)

= 14.8%



Independence :

if E and F are events ul p(F) > o ,the events

are independent iff :

p(E I F) =p( E) , and

p (EaF) =p(E)
'

pCF)



e.g. , probability of rolling
' '

snake -
eyes
" (two l's) using

two six -sided dice

E -
- rolling a 1 on first die

F = rolling a l ou second die

PCE) = 'T p(F) =I

PCE IF) = 'T

PLEA F) =P(E) PLF) = IT



Mutual independence :
a setofevents E. , Ez, . . . . En are mutually independent
iffor any subset of theevents

Ei
,
. .

.Ej ,

p CE in . .
AEi) =p(Ei)

.
. -

p (Ej)

e.g ,the three events E. , Ez , E3 aremutually independentif
plein Ea) =p(E)plea)

p(Ein Es) -
-

p CEDp LED

pCE-A E3) =pLEDp(E3)

p(Ein En Es) =p(E) PLED pCE)



e.

g. , suppose we ftp. three coins and consider these events :
E ,
= coin I matches coin 2

Ez = coin 2 matches coin 3

E3 = coin 3 matches coin I

are E.
,E , Ez mutually widependent ?

S = { HHH ,
HHT

,
HTH

,
HTT

,
THH

,
THT

,
TTH

,
TTT }

PCE ) =p({HHH , HHT ,TTH ,
TTT 3)= I

PLED =p (E3) = I as well , by symmetry .
F
!

PCEnEa) =p(SHHH , TTT}) =¥ = PCE) PCE) ¢
pleinEs) =p (E) PCE) and PLEAEs)=P(E)PEs) by symmetry .

.

pCE, AEN Es)=p& HHH ,TTT})
-

-¥ fpCE7pCE)pCE-



K-way independence :
a set of events E. ,Ez , . .

,Ea are K
-

way independent
'

iff

every K
-sized subset of these events is mutually uidgxndent

(z-way
wide
pma

is aka "pairwise
" independence)

e.g. ,
the events on the previous page are pairwise independent,
but not mutually independent !



when we wanttoperform mathematical analysis of potabilities ,
especiallyacross many differentevents ,focusing on individual
events is unwieldy .
e.g. , p (fhipping a coin heads up to times in a row)

PCflipping a coin heads up between o- lo times wi a row)
# of times to flip a coin tafore we expect to see heads

prefer to write :
P(c -- lo)

,
P(CE lo)



Random Variables

a R .
V

.

is a complete function from the sample space of an

experiment onto R (the set of real numbers)

e.

g., grin an experiment of sample space
S
,
we can describe

a R.V. X : s→IR



e.g
. based on the experimentof tossing 3 coins , define
the random variables

C : whidrmapseadroukometoits # oftails
D : which maps

each outcanetolifithas
atleast 2 tails , and 0 otherwise

s ←
e.g. ofBernoulli RV.
(0/1 valued)

C HHH D aka .
"characteristic

"

←{ HHT }- o or
" indicator "

I- HTH variable .

THH

}T{ 'IIF }-
I

TTH✓
TTT

.



givin sample space S and RV. X , the event where X-- y
is :

{ w e s / x (w) = y }

and the probability of this event is :

pl X-- y) = IpCw)
wES INw)-- Y



S

C HHH D

Tf 't'¥n }- o
l-

THH
2

HTT t

FLEET.it
e.g. ,

TTT

p(C=l)=3/g observations :

plc-2) = 4/8=1/2
- a Rihpartitnaisthesampkspaee

PCC's) -- 4/8--42=134--1)
- foranyrixwrangcr ,

PCCEO)- I ¥rpK=y)=l
.



R .V.s X and Y are independent if

txy ER (pCx-- x n 'f-y) -- put- x) - poky))

alternatively, using conditionalprobability :

tx y EIR (pH-- x / Y--y) =p (xx) or pcx
-
- x) = O)



grain a R.V. X
,
the probability massfunction (part) is :

fCx) =p(x-- x)

and the cumulative distribution function Case) is :

FG) =p(xEx) = y¥ play)



together , the TMF and CAF describethe distribution of
probabilities overthe range of a RV.

-

many
RVs havethe same distributions , and frequently

arising
distributions are well studied .The mostcommon

distribution's used in computerscience are :

I . the Bernoulli distribution

2. the uniform distribution
3. theBinomial distribution



The Bernoulli distribution describes a RN. af range { o, I } ,
where

f-(o) =p ,
f Ci) -- I -p ,

and

Flo) =p , F ( 1) = I



a Bernoulli RV. describes the probability of success ffaeinre of
a

" Bernoulli trial
"
- an experiment oftwo possible outcomes .

e.g. , flipping a coin is success
-
- H (p

-
- o.5)

rolling two six- sided dice ; successZ l l (p = 3/36 = Yrs)



The uniform distribution describes a R.V. of range R -- Ea , at l , . . . , b- I ,b}

where all values are assigned the same probability , ie . ,

t KER f-(H = it
V KER FCK) = k-atl.IRI



uniform RVs are found in many
"fair " experiments ufmultiple outcomes

e.
g. , rolling a six-sided die ; f(any outcome) = tf

drawing a card from a shuffled deck ; f
-Cangcard)¥

an element bring atpiston k wi an f
unsorted array of sin µ

i Ck ) --NI



The Binomial destitution describes a R.V. which counts the

#of successes in n uidysendeut Bernoullitrials

e.g. ,
coriander ftp.piug a coin four times , where " success

"
= H

R .V
.
X maps each outcome

in s to the# of H's

1st = 24 = 16

f-G) = 6T

f- (3) = 4561 = % = I



For a Binomial RV. that models nz I mdipcndact Bernoulli trials ,
each A probability O cpal of success :

fu(K) = ( Yc) pk( I- p)n
-k

tf p =I ( ' 'fair
"/" unbiased

" trials)
,
we have :

fuk) -- (1)In2



e.g. , what is the probability that exactly 50 of too coin tosses
result in a heads ?

( 'Io)Too = 7.9%

e.g. what is the probability that between I -25 of too coin tosses
result in a heads ?
E
Z (

'

E)÷ = o .
000028%

K= I



the Expected Value (aka average/mean) of a RV . X over
the sample space

S is :

ELM = Esp(w) x (w)



e.g .
what is the expected value of rollinga 6 -sided die ?

outcomes = { I
,
2
,
3
, 4 , 5 ,

6 }

PCx ) -

- te te te Te Te te

E(x) = I t 2 t 3 t 4 t 5 t6

6-
= 261 = 3.5



E-(x) can also be computed asthe weighted average of values
in the range R of X

:

EU) = Ifry play)

proof. EG) --EspCw) xLw) = Er Ifwhat
-

- E. y ExaEyT
""E Fergex

-
-

y)



e.g . . consider a game
where you roll two 6

- sided die and

win $1000 if you got a 2 , and lose $100 otherwise .

Would you play?

what would
you expectto winthose pergame ?

expected winnings = ft shoo tf-shoo) 335J = - $69.44

Douty !



e.g. , consider a game
where 3 players wager $10

each outta

outcome ofacoiutoss - fall players gueesooreettylwrougy,
nobody wins , otherwise the players who guess wrongly lose
their wagers , and

the players who guess correctly sphtthepot.
Would you play ?
demo :

You Tom Harry . Result

Ttt) Tks) H Go) T

HCO) H (o) H Co) T

Hoo) THO) T Cto) H



probability winnings
HV •

I 0

TV
at T

y/¥". I +5
•

you
't Xk HV t
Tx ont s +5•¥ ¥". t to

aqededwiuniugsprgame -- OYa HV II 8
- 10¥E•¥4. I
no

ok to play !•

• I -10
•

Hut tf O



e.

g. , consider a game
where 3 players wager $10

each onthe

outcome of a coin toss . If all players guess correctly/wrongly,
nobody wins , otherwise the players who guess wrongly lose
their wagers , and

the players who guess correctly split the pot.

You play I 00 games , and have
lost over $250. Is this

just bad luck , or is there some other explanation ?

the other players must be cheating !



probability winnings

TV
atef
¥i the ts
•

grew ¥1.tw#q-YsIt5•¥
aqcdedwiuniugsprgame -4He

#fJ#¥%•¥*: that
no =¥=$aso

T¥¥9 ¥4 - to Tom and Harryare colluding !
•

to Candhidy splitting their¥a#
winnings)



When RV . X :S → IN
,
then we can also compute :

EG) = pcxsi ) =
.

pcxzi )

proof : pH > i ) = pcxso) =p(x=DtPk=DtpH:3)t . .
+ pcx> l) = +

ptx-htpG-3ttplx.se) = t past. ..
: -

t.pl#7t2.pCx--z)t3PLE-3)t.--ELX)



e.

g
. consider a network router that drops each miamingpacket
of probability of (mutually independently)
on average, how long until the first dropped packet?

let X -

- # of first dropped packet ; find ECX)

E-CH -- Fi pcxsi )°
-

p(no packets dropped up
to ith packet)

=p ( l notdropped) . plz not dropped) i r -

pCi not dropped)
= G -g) . U - q) . . . a-g)
=G-g)

i



EH -
- IEEE 't II.rivera -

- I --⑤
r
~

geometric series

first n terms : s = rotr 't r't . - t r
""

rs = r
'
tft . .

. . t r
"

s - rs -- ro- ru

sci - r) = I - ru

±:* :
I- r i-r



e.

g
. consider a network router that drops each miamingpacket
M o . I% probability .

on average, how long until the first dropped packet?

↳ = I 000 packets . ( booth is dropped)

"

mean time to failure
"
- MTTF



e.g . suppose you flip a can repeatedly until you see a
heads

. How many
tails are

you likely to see
before the first heads ?

MTTF ,
where " failure" is heads

⇒ = z
- lie .

,
second flip ,on average , is head ,

so 2 - I =L tail is expected .



e.g . suppose you flip a coin repeatedly until you see at
least one tail and one head .

On average , how

many
coin flips are required ?

let flip is H or T
then , on average 2 ftp.s to seethe other face

i.e., I t 2
-

- 3 flips



Expected values obey a rule called
" LinearityofExpectations ",

which
says that for

RV. s Xi
,
Xz , . . , Xn on sample space S,

E(X i t Xzt . .
.TXn) = E(X,)tEmt . . tE(Xn)
-

note : independence is not necessary !

and that for any RV. X
and a , bER ,

ElaXt b) = aEG)tb



e.g-
"
hat-cheek problem

"
: a hat -cheek deck loses trade of which

of n hats belongto whom , and returns them at random .

What is the average# of hats returned correctly ?

let X = # of customers that gettheir hat back

E LA -

- iz i.pU?g
P(x-- i) = {i¥i) ,

I e i s n -z

- n-← i s n
n ! I



e.g
.

"
hat-cheek problem

"
: a hat -cheek deck loses track of which

of n hats belongto whom , and returns them at random .

What is the average# of hats returned correctly ?

let Xi be the Bernoulli RV . that indicates if customer i
receives the correct hat .

EG i) -- O -pair o) tip (Xi
-

- l ) = In

the RV
.
that describes the#of hats returned correctlyis

X = X ,
t Xz t . . .

tXu

E-(X) = ELK txt . . .
tXn) -- ELX.lt Elks)t . - r TEHn)

= In t tu t r - -t ut -- ha= I



i.e.
,
the expectation ofa Binomial RV. that models

nzl trials of probability p success
Foch

has expectation :
Elk) = up
recall : pH-- k) = ( Yc) p"( I- p)

"-K

-
" EG) -- Ezo(4) PKG- p)

""
-
- up



e.g. , if we manufacture 10
,
ooo widgets , each up a 0.0140

chance of vitrodoing a manufacturing defect , how many
defective widgets will we have on average ?

to,000 . O -

O l % = I



e.g. , if we roll 3000 6- sided dice
,
what is the

number of 3 's we expect to see , on average , if
we cannot assume the rolls are mutually uidqxudent ?
p =L6

up = 3061 = 500
- linearity of expectation

doesn't assume independence
l
.



Average case computational complicity of an algorithm can be
found by computing the expectation of the Rv. X , where :

- the sample space of X are its possible inputs io, i . . . . in , and
- X assigns to each input the# of operations carried
out by the algorithm for that uipnt .

we just need to assign a probability to each uiput , and

E(x) = Ipo PCis) xLij)



e.g.
insertion sort :

mooned
med

/-42 3 7 5 I 6

Insat

2 4 I 3 7 5 I 6

2 3 4 / 7 5 I 6

2 3 4 71 5 I 6

2 3 4 5 7 / i 6

I 2 3 4 5 7 16
I 2 3 I 5 6 71



let X = # of comparisons needed to sort a bit of a , .az, . . . ,an elements .

let Xi =# of comparisons needed to insist ai into soiled list of a, ,ay .
. . ai,

X = X
,
t Xzt . . .

t Xn

EG) = ELX , txt . - itXu) =EH .) teka)t . - t E (Xn)
(Mbeki

E-(Xi) = ? - assuming random list kplxik) ;÷zk .!z=idi¥
e. g . A , a2 as a41 a5 # comparisons = I ,2,314,4
--

can I
end up anywhere

ELN = t.ZELxil-E.it#=IJIsj=n73f-IEo- (n)


