Disorde Probability CS 330: Discrete Structures

experiment: a procedure that yields one of a set of possible orderanes
e.g., rolling a six-sided die
sample space: the set of possible outcomes
e.g., 1, 2, 3, 4, 5, 6
event: a subset of the sample space
e.g., rolling a 2, rolling an even t
probability of an event E:
$$p(E) = \frac{|E|}{|S|}$$
, given sample space S
e.g., $p(rolling an event the value six-sided die) = \frac{3}{6} = \frac{1}{2}$

e.g., adde of winning Mega-Milhons jackpot
- five numbers in range 1-70 (no duplicates, order doesn't matter),
-1 number in vange 1-22 ("Mega-tall")

$$|S| = \begin{pmatrix} 70 \\ 5 \end{pmatrix} \cdot 25 = 302, 575, 350$$

odde of winning = $\frac{1}{202, 575, 350}$

e.g., probability of having a full house after bring
dealt fine cards from a regular deck of playing cade?

$$|S| = \begin{pmatrix} 52 \\ 5 \end{pmatrix} = 2,598,960 \text{ make for pair suit, for } 4 \text{ cuitz} \\ \times 13 \text{ rankes} \\ \text{full house} = 13 \cdot \begin{pmatrix} 4 \\ 3 \end{pmatrix} \cdot 12 \cdot \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 3744 \\ \text{ranks for triple} \text{ suits for triple} \\ \text{p(full house} = \frac{3,744}{2,98,960} \approx 0.00144 \approx 0.144\%$$

e.g., probability of having two pairs after bring
deabt fine cards from a regular deck of playing carde?

$$|two pairs| = \frac{|3 \cdot \binom{4}{2} \cdot 12 \cdot \binom{4}{2} \cdot 1| \cdot \binom{4}{1}}{2} = \frac{|23,552}{24 \text{ because order of pairs docent matter}}$$

$$P(two pairs) = \frac{|23,552}{21598,960} \approx 4.75 \text{ of}_{0}$$

sum rule: if E1 and E2 are disjoint events, $p(E_1 \cup E_2) = p(E_1) + p(E_2)$, and generally, for pairwise disjoind events E_1, E_2, \dots, E_n , $p(\bigcup_{i=1}^n E_i) = \bigcup_{i=1}^n p(E_i)$

Complement rule : if E is an event in the samele space S, $P(\overline{E}) = I - P(\overline{E})$

e.g., p(rolling anything other than a 7 w two 6-sided dia)?

$$I - p(rolling a 7)$$

$$= I - \left[\frac{2(1,6), (2r5), (3,4), (4,3), (5,2), (6,1)}{6\cdot 6}\right]$$

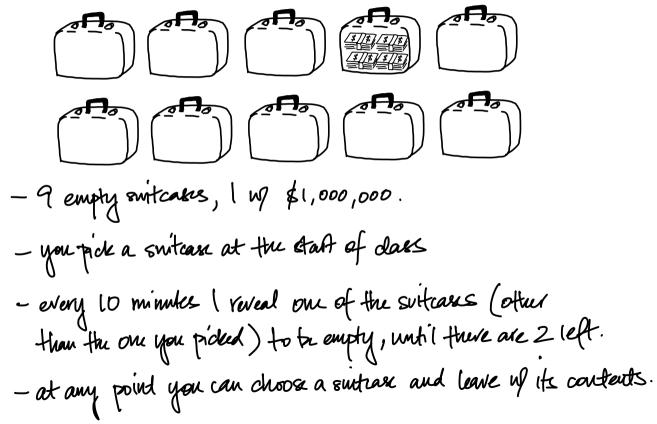
$$= I - \frac{1}{6}$$

$$= \frac{5}{6}$$

e.g., probability of tring dealt a 5-card hand that
contains at least one Ace?
[hands upo Acce] =
$$\begin{pmatrix} 48\\5 \end{pmatrix}$$

[hand up at least one Ace] = $\begin{pmatrix} -48\\5 \end{pmatrix}$
[hand up at least one Ace] = $\begin{pmatrix} -48\\5 \end{pmatrix}$

e.g., "deal or no deal, CS 330 édition":

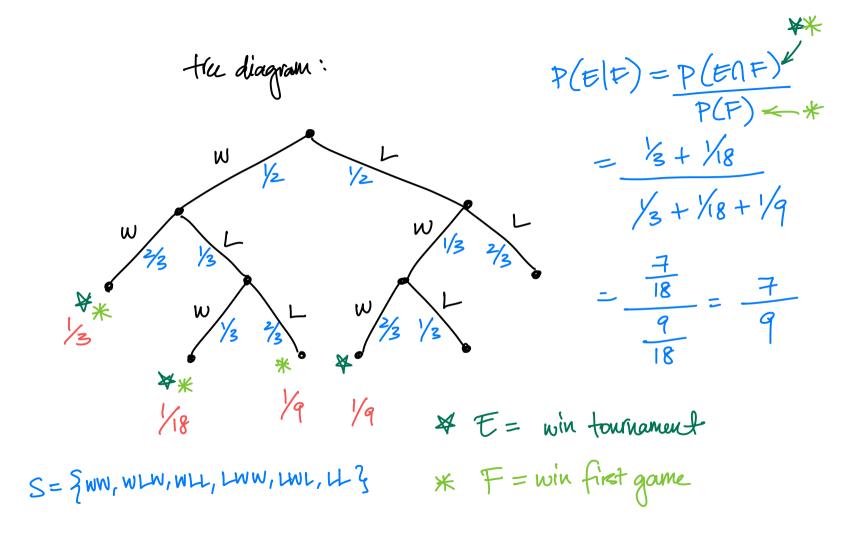


e.g., "deal or no deal, CS 330 édition م الم is it worth waiting foir me to reveal 8 surfcasse to the empty, or do you have the same odds of leaving up \$1M if you choose early? definitely worth waiting! 10 vs. 2 suitcass to rick from !

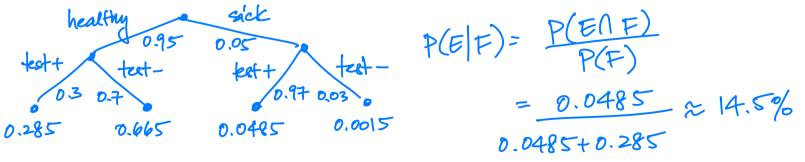
Monty Hall protem e.g., "deal or no deal, CS 330 edition": after l've revealed the 8th empty suitcase, do you proset in opening the surfcase you picked initially, or do you switch? (are the odds of leaving up \$1M any different?) Switch ! $P(\text{original pick} = $1\text{M}) = \frac{1}{10} P(\text{switch pick} = $1\text{M}) = \frac{9}{10}$

Conditional probability:
if E and F are events up
$$p(F) > 0$$
, the probability
of E given that F has already occurred (i.e., probability
of E conditioned on F) is:
 $P(E|F) = \frac{P(E\cap F)}{P(F)}$

e.g., In a best-of-three tormament, the Itt women's soccer team
wins the first game of probability
$$\frac{1}{2}$$
. The probability of winning
any following game is:
 $\frac{2}{3}$; if the preceding game was won, and
 $\frac{1}{3}$; if the preceding game was best.
What is the probability that we wan the tournament, given
that we wan the first game?
 $E = we wan the first game?$
 $E = we wan the tournament, F = we wan the first game $P(E(F) = \frac{P(E\Gamma F)}{P(F)})$$



eq., Considur a covid-19 left with a 3% false negative rate, and
a 30% false positive rate. 1.e.,
- if you have covid-19, there is a 3% chance the test says you don't
- if you don't have covid-19, there is a 30% chance the test says you do
assuming an infection rate of 5%, how accurate is the test?
i.e., if E is the event that someone has covid-19, and
F is the event that the test is positive, what is
$$P(E|E)$$
?



e.g., based on the preceding example, if the women's soccer team won the tournament, what is the likelihood that they won the first game? from before, E = won tournament, $P(E|F) = \frac{7}{9}$ F = won first game, now une want $P(F(E) \leftarrow "a proderiori" probability (E occurs$ after F!)Conditional probability $P(E|F) = \frac{P(E \cap F)}{P(F)}$ $P(F|E) = \frac{P(E|F)}{P(E)} = \frac{P(E|F)}{P(F)} = \frac{7}{4} = \frac{7}{9}$

Bayer' Rule: If E and F are events where p(E) > 0 and p(F) > 0, P(E|F) = P(F|E)P(E)P(F) unicronations (philosophical): e.g., E = has COVID F = position-test Bayesian - me are computing a "degner of belief" < P(E|F) tells me how likely in proposition Equinen evidence F F is you have COVID Frequentist - we are measuring the relative of ontcomes in which events E ? F occur < you eather have covid or not, but this describes the population at large

Dauges Kule (extanded form) Bayes' $P(E|F) = \frac{p(F|E)p(E)}{p(F)}$ (F) Bayes Rule (extended form): Know that P(F) = P(F(E) + P(F(E)) by conditional probability: $P(F \cap E) = p(F \mid E) p(E)$ P(FNE)=P(FLE)P(E) $\begin{array}{l} & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ &$

e.g., Consider a covid-19 Let with a 3% false negative rate, and
a 30% false positive rate. I.e.,
- if you have covid-19, there is a 3% chance the test says you don't
- if you don't have covid-19, there is a 30% chance the test says you do
assuming an infection rate of 5%, how a curate is the test?
E = someone has covid-19
F = test le positive / using
P(E|F) =
$$\frac{P(F|E)P(E)}{P(F|E)P(E)+P(F|E)P(E)} = \frac{(0.97)(0.05)}{(0.97)(0.05)+(0.3)(0.95)}$$

 $\approx 14.5\%$

Independence:
if
$$E$$
 and F are events up $p(F) > 0$, the events
are independent iff:
 $p(E|F) = p(E)$, and
 $p(E\cap F) = p(E) \cdot p(F)$

e.g., probability of rolling "snake-eyes" (fwo lic) using
two six-sided dice
$$E = rolling a l on first dicF = rolling a l on second dicp(E) = t p(F) = tP(E|F) = tP(E |F) = tP(E |F) = t$$

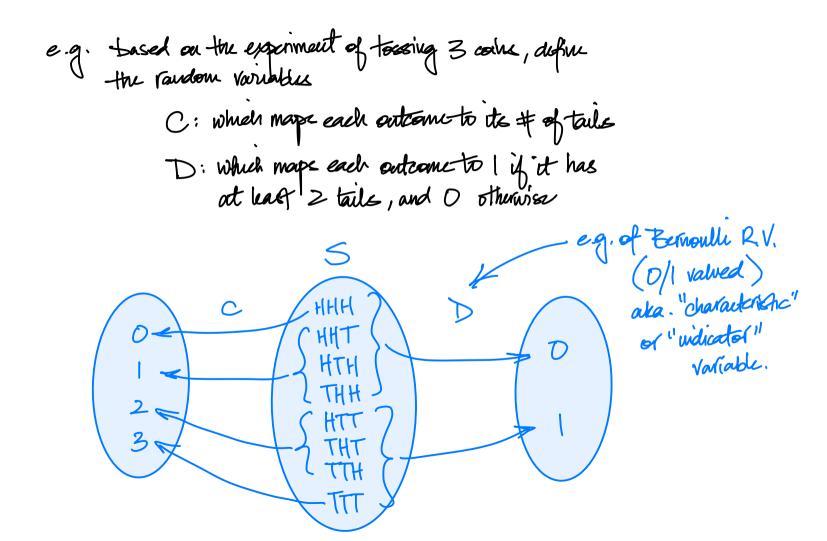
Mutual independent:
a set of events
$$E_i, E_2, ..., E_n$$
 are mutually independent
if for any subset of the events $E_i, ..., E_j^{-1}$,
 $p(E_i \cap ... \cap E_j^{-1}) = p(E_i^{-1}) \cdots p(E_j^{-1})$
e.g. the three events E_i, E_2, E_3 are mutually independent if
 $p(E_i \cap E_2^{-1}) = p(E_i)p(E_2)$
 $p(E_i \cap E_2^{-1}) = p(E_i)p(E_2)$
 $p(E_i \cap E_2^{-1}) = p(E_i)p(E_2)$
 $p(E_i \cap E_2^{-1}) = p(E_i)p(E_3)$
 $p(E_i \cap E_2^{-1}) = p(E_i)p(E_3)$
 $p(E_i \cap E_2^{-1}) = p(E_i)p(E_3)$

•

e.g., suppose we fip three coins and consider three events:
E. = coin 1 matches coin 2
Ez = coin 2 matches coin 3
Ez = coin 3 matches coin 1
are E., Ez, Ez mutually undependent?
S =
$$\frac{2}{4}$$
 HHH, HHT, HTH, HTT, THH, THT, TTH, TTT?
 $p(E_1) = p(\frac{2}{4}$ HHH, HHT, TTH, TTT?) = $\frac{1}{2}$
 $p(E_2) = p(E_2) = \frac{1}{2}$ as well, by symmetry.
 $p(E_1 \cap E_2) = p(E_1) P(E_2)$ and $p(E_2 \cap E_3) = p(E_1) P(E_2)$
 $p(E_1 \cap E_2) = p(E_1) P(E_2)$ and $p(E_2 \cap E_3) = p(E_1) P(E_2)$
 $p(E_1 \cap E_2) = p(E_1) P(E_2)$ and $p(E_2 \cap E_3) = p(E_1) P(E_2)$
 $p(E_1 \cap E_2) = p(E_1) P(E_2)$ and $p(E_2 \cap E_3) = p(E_2) P(E_3)$

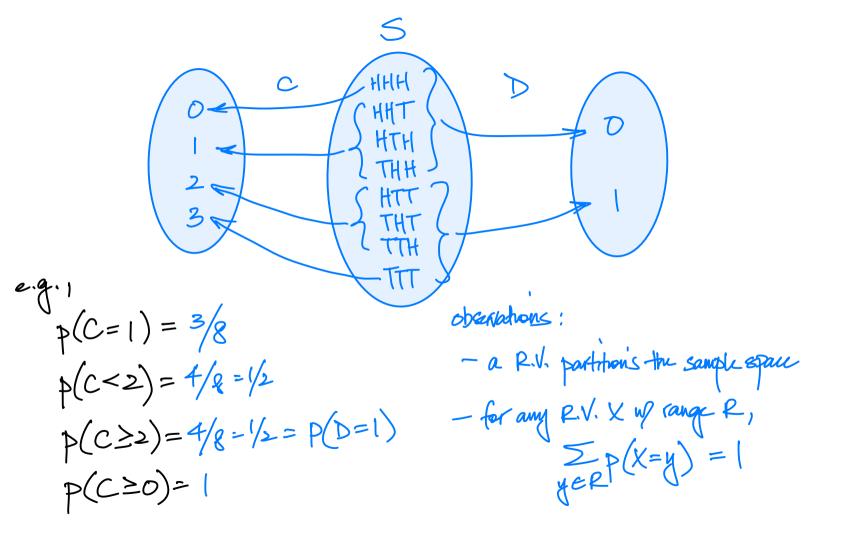
when we want to preform mathematical analysis of probabilities,
especially across many different events, focusing on individual
events is nowieldy.
e.g.,
$$p(flupping a coin heads up 10 times in a row)$$

 $p(flupping a coin heads up between 0-10 times in a row)$
it of times to flip a coin before we expect to see heads
prefer to write:
 $P(C=1D)$, $P(C \leq 1D)$



given sample space S and R.V. X, the event where
$$X = y$$
 is:
 $\begin{bmatrix} w \in S \\ X(w) = y \end{bmatrix}$
and the probability of this event is:
 $P(X = y) = \sum P(w)$
 $w \in S[X(w) = y]$

•



R.N.S X and Y are independent iff

$$\forall x y \in \mathbb{R} (p(X=x \land Y=y) = p(X=x) \cdot p(Y=y))$$

alternatively, using conditional probability:
 $\forall x y \in \mathbb{R} (p(X=x | Y=y) = p(X=x) \text{ or } p(X=x) = 0)$

given a R.V. X, the probability mass function (PMF) is :

$$f(x) = p(X=x)$$

and the cumulative distribution function (CDF) is :

•

$$F(x) = p(X \leq x) = \sum_{\substack{y \leq x \\ y \leq x}} p(X = y)$$

together, the PMF and CDF duscribe the dugritution of probabilistics over the range of a R.V.

many R.V.S have the same distributions, and frequently arising distributions are well Andied. The most common distributions used in computer science are:

1. the Bernoulli ductribution 2. the Uniform distribution 3. the Binomial distribution

The Bernoulli distribution describes a R.V. w) range 20, 13, where f(0) = P, f(1) = 1 - P, and F(0) = P, F(1) = 1

e.g., flipping a coin; success = H (p=0.5)
rolling two six-sided dice; success
$$\geq 11$$
 (p= $\frac{3}{36} = \frac{1}{13}$)

The uniform distribution describes a R.V. w/ range R = Za, a+1, ..., b-1, b ? where all values are assigned the same probability, i.e.,

 $\forall k \in R \quad f(k) = \frac{1}{|R|}$ $\forall k \in R \quad F(k) = \frac{k - a + 1}{|R|}$

uniform R.V.s are found in many "fair " experiments up multiple outcomes e.g., rolling a six-sided die ; f (any outcome) = 6 drawing a card from a shuffed deck; f (any card) = 52 an element bring at position k in an $f(k) = \frac{1}{N}$ unsorted array of size N

The Binomial digititation describes a R.V. which counts the
of successes in a independent Bernoulli-trials
e.g., constoler fripping a coin four times, where "success"= H
R.V. X maps each outcome in S to the # of H's

$$|\leq| = 2^{+} = 16$$

 $f(i) = \frac{1}{16}$
 $f(3) = \frac{(\frac{4}{3})}{16} = \frac{4}{16} = \frac{1}{4}$

•

For a Einsomial R.V. that models $n \ge 1$ independent Bernoulli trials, each is probability 0 of success:

$$f_{n}(k) = \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$f = \frac{1}{2} \quad ("fair"/"unbiased" + trials), we have: f_u(k) = \binom{n}{k} \frac{1}{2^n}$$

e.g., what is the probability that exactly SD of 100 cointesces
result in a heads?
$$\binom{100}{2^{100}} \approx 7.9\%$$

e.g. what is the probability that between
$$|-25$$
 of 100 coin tossee
result in a heads?
$$\sum_{k=1}^{26} {100 \choose k} \frac{1}{2^{100}} \approx 0.000028\%$$

-the Expedicat Value (alka average/mean) of a R.V. X over the sample space S is:

 $E(X) = \sum_{w \in S} p(w) X(w)$

e.q. what is the expected value of rolling a 6-sided dic?
outcomes =
$$5, 1, 2, 3, 4, 5, 6$$

 $p(X) = \frac{1}{5}, \frac{1}{5},$

$$E(X) \text{ con also to computed as the neighted average of values
in the range R of X:
$$E(X) = \sum_{\substack{y \in P}} y P(X=y)$$

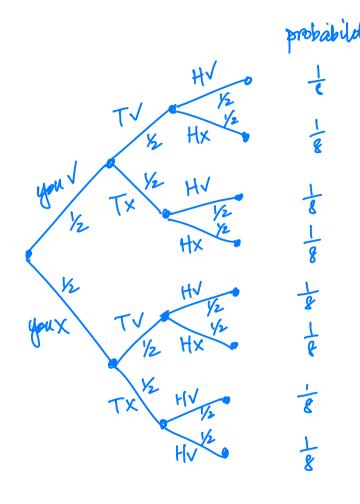
$$proof: E(X) = \sum_{\substack{w \in S}} p(w) X(w) = \sum_{\substack{y \in P}} \sum_{\substack{w \in S}} p(w) X(w)^{-1} y$$

$$= \sum_{\substack{y \in P}} y \sum_{\substack{w \in S}} \frac{p(w)}{p(X=y)} = \sum_{\substack{y \in P}} y P(X=y)$$$$

what would you expect to win/losz programe? expected winnings = $(+\$1000) \frac{1}{36} + (-\$100) \frac{35}{36} = -\$69.44$ Don't play!

e.g., consider a game where 3 players wager \$10 each on the outcome of a coin tocs. If all player grees correctly/wroughy, notady wins, otherwise the players who guess wrongly wer their wager, and the player who gress correctly split the pot. Would you play ? denso:

Hamy. H (-10) Regult Tom You T(+5)Τ 丁(+5) T H (0) H(o)H(0)H T (-10) T(-10) $H(+\infty)$



www.wgs ts +5 +20-10 -10 -10

D

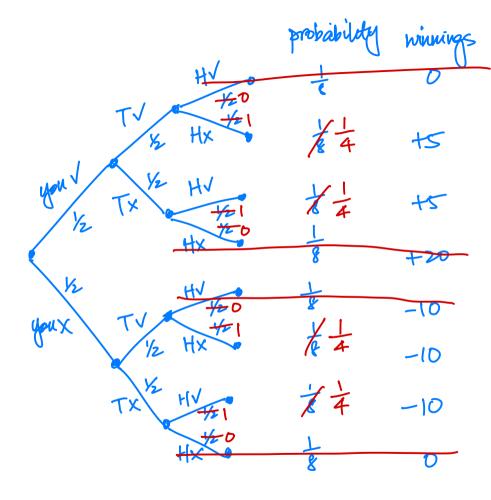
expected winnings per game = D

OK to play !

e.g., Consider a game where 3 players wager \$10 each arthu outcome of a coin tocs. If all players grees concerty/wroughy, notody wins, otherwise the players who gress wroughy lose their wager, and the player who gress correctly split the pot.

You play 100 games, and have lost over \$250. Is this just bad hude, or is there come other explanation?

the other players must be cheating!



expected winninge per game = D = $\frac{10}{7}$ = \$2.50 Tom and Harry are colluding! (and hirdly splitting their winnings)

When R.V. $X : \leq \rightarrow N$, then we can also compute: $E(X) = \sum_{i=0}^{\infty} p(X > i) = \sum_{i=1}^{\infty} p(X \ge i)$

 $proof: \sum_{i=0}^{\infty} p(x > i) = p(x > 0) = p(x=1) + p(x=2) + p(x=3) + ... + p(x > 1) = + p(x=2) + p(x=3) + ... + p(x > 2) = + p(x=3) + ... + p(x > 2) = + p(x=3) + ... + p(x > 2) = + p(x=3) + ... + p(x=$ $1 \cdot p(k=1) + 2 \cdot p(k=2) + 3 \cdot p(k=3) + ...$ = E(X)

e.g. consider a retrively router that drops cach incoming predet
up protability q (mintually independenting)
on average, how long multil the first dropped predet?
let X = # of first dropped predet; find E(X)
E(X) =
$$\sum_{i=0}^{\infty} p(X=i)$$

 $p(no \text{ predects dropped up to its predet)$
 $= p(1 \text{ int dropped}) \cdot p(2 \text{ not dropped}) \cdots p(i \text{ not dropped})$
 $= (1-q) \cdot (1-q) \cdots (1-q)$
 $= (1-q)^{i}$

$$E(X) = \sum_{i=0}^{\infty} (1-q)^{i} = \sum_{i=0}^{\infty} r^{i}, 0 < r < 1 = \frac{1}{1-r} = \frac{1}{8}$$

first n terms: $S = r^{0} + r^{1} + r^{2} + \dots + r^{n-1}$

 $rS = r^{1} + r^{2} + \dots + r^{n}$

 $S - rS = r^{0} - r^{n}$

 $S(1-r) = 1 - r^{n}$

 $S = \frac{1-r^{n}}{1-r}$

 $\lim_{n \to \infty} \frac{1-r^{n}}{1-r} = \frac{1}{1-r}$

e.g. consider a network router that drops each micaning packet

$$\sqrt{9}$$
 0.1% protability.
on average, how long with the first dropped packet?
 $\frac{1}{0.001} = 1000$ packets. (1000th is dropped)

"mean time to failure" - MTTF

eq. suppose you find a coin repeatedly multilyou see a
heads. How many tails are you likely to see
before the first heads?
MTTF, where "failure" is heads
$$\frac{1}{2} = 2 - i.e., second flip, on average, is head,so 2-1 = 1 tail is expected.$$

•

Expected values aboy a rule called "Linearity of Expectations",
which says that for P.V.S X1, X2,..., Xn on cample space S,

$$E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n)$$

note: independence is not necessary!
and that for any P.V. X and a, b $\in \mathbb{R}$,
 $E(aX + b) = aE(X) + b$

e.g. "hat-check problem": a hat-check clerk boxes track of which of n hats belong to whom, and returns them at random. what is the average # of hats returned concerty? let X = # of curtomers that get thur hat back $E(X) = \sum_{i=1}^{n} i(p(X=i))?$ $P(X=i) = \begin{cases} \frac{1}{i!(n-i)}, & 1 \le i \le n-2 \\ \frac{1}{n!}, & n-2 < i \le n \end{cases}$

e.g. "hat-check problem": a hat-check clerk loves track of which of n hats belong to whom, and returns them at random. What is the average # of hats returned concerty? let Xi be the Bernoulli R.V. that indicates if endromer i receive the correct hat. $E(X_i) = 0 - p(X_i = 0) + 1 \cdot p(X_i = 1) = \frac{1}{n}$ the R.V. that describes the # of hat's returned convecting is $X = X_1 + X_2 + \ldots + X_n$ $E(X) = E(X_{1} + X_{2} + \dots + X_{n}) = E(X_{1}) + E(X_{2}) + \dots + E(X_{n})$ $= \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} = -\frac{n}{n} = 1$ I.e., the expectation of a Binomial R.V. X that models $n \ge 1$ trials of probability p success each has expectation: E(x) = nprecall: $p(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$... $E(X) = \sum_{k=0}^{n} {\binom{n}{k}} {\binom{n}{k}} {\binom{n-k}{k}} = np$

e.g., if we roll 3000 6-sided dice, what is the number of 3's we expect to see, on average, if we cannot assume the rolls are mutually independent? P=+ $np = \frac{3000}{6} = 500 - lineanty of expectation$ doesn't assume independence!

Average case computational complexity of an algorithm can be found by computing the expediation of the R.V. X, where: - the sample space of X are its possible inpute is, i., .. in, and - X assigne to each input the # of operations carried out by the algorithm for that input. me just need to averign a probability to each upit, and $E(X) = \sum_{j=0}^{\infty} p(i_j) X(i_j)$

eg. insafron	soft ;		unerfed			
804 4	2	3	7	5	l	6
2	4 WS24	3	7	5	(6
	3					
2	3	4	7	5	١	6
2	. 3	4	5	7	١	6
١	2	3	4	5	7	6
١		3				7

Υ.

let X = # of compansions needed to soft a list of $a_1, a_2, ..., a_n$ elements. Let $X_i = \#$ of compansions needed to insuf a_i into softed list of $a_1, a_2, ..., a_{i-1}$