Induction & Recursion CS 320 : Discrete Structules

Many conjectures have the form:
$$\forall n \in \mathbb{N} P(n)$$

Mathematical induction is a technique for proving conjectures
of this form based on the rule of inference:
 $7 P(1) [basis]$
 $P(n) [basis]$
 $P(n) is true
 $\forall (P(n) \rightarrow P(n+1))[$ unductive step]
 $P(n) is true
("inductive hypothesis")
prove $P(n+1)$ must
depunding on
depunding on
domain of proof$$

Infinitely tall ladder... (1) show that we can reach the first rung 3 Show that from any given vung, me can væren the next ning

e.g. prove that
$$\forall n (2^{\circ} + 2^{i} + ... + 2^{n} = 2^{n+l} - 1)$$

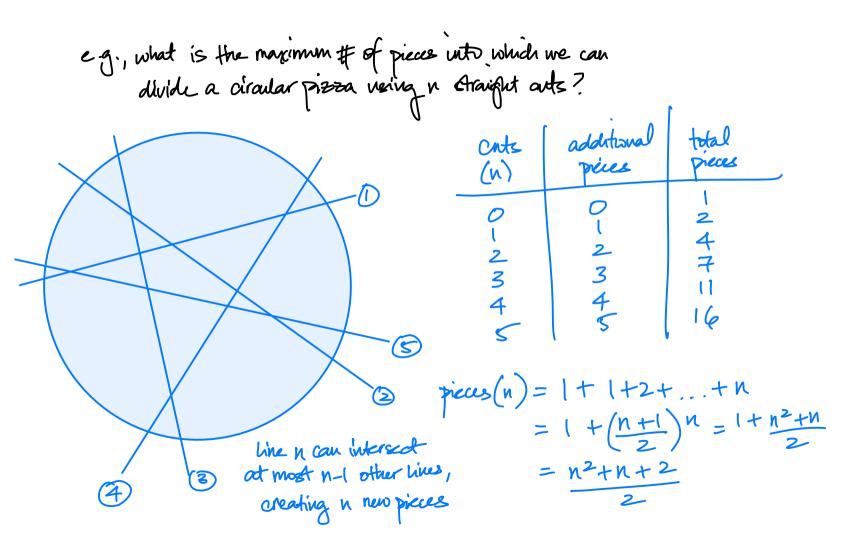
 $P(h): 2^{\circ} + 2^{i} + ... + 2^{n} = 2^{n+1} - 1$
 $basis: P(o): 2^{\circ} = 2^{o+1} - 1$
 $1 = 2 - 1 = 1$ / supprising else (incut the trying to
 $1 = 2 - 1 = 1$ / supprising else (incut the trying to
 $1 = 2 - 1 = 1$ / supprising else (incut the trying to
 $1 = 2^{o} + 2^{i} + ... + 2^{n} = 2^{n+1} - 1$ [inductive hypothesis]
 $add 2^{n+1}$ to bolk sides
 $2^{\circ} + 2^{i} + ... + 2^{n} + 2^{n+1} = 2^{n+1} - 1 + 2^{n+1}$ (inductive hypothesis]
 $add 2^{n+1}$ to bolk sides
 $2^{\circ} + 2^{i} + ... + 2^{n} + 2^{n+1} = 2^{n+1} - 1 + 2^{n+1}$ (inductive hypothesis]
 $2^{\circ} + 2^{i} + ... + 2^{n} + 2^{n+1} = 2^{n+1} - 1 + 2^{n+1}$ (inductive hypothesis]
 $2^{\circ} + 2^{i} + ... + 2^{n} + 2^{n+1} = 2^{n+1} - 1 + 2^{n+1}$ (inductive hypothesis]
 $2^{\circ} + 2^{i} + ... + 2^{n} + 2^{n+1} = 2^{n+1} - 1 + 2^{n+1}$ (inductive hypothesis]
 $2^{\circ} + 2^{i} + ... + 2^{n} + 2^{n+1} = 2^{n+1} - 1 + 2^{n+1}$ (inductive hypothesis]
 $2^{\circ} + 2^{i} + ... + 2^{n} + 2^{n+1} = 2^{n+1} - 1 + 2^{n+1}$ (inductive hypothesis]
 $2^{\circ} + 2^{i} + ... + 2^{n} + 2^{n+1} = 2^{n+1} - 1 + 2^{n+1}$ (inductive hypothesis]

e.g. prove that
$$\forall n \ge 5$$
, $2^n \ge n^2$
 $P(n): 2^n \ge n^2$
tasis: $P(5): 2^5 \ge 5^2$
 $32 \ge 25 \sqrt{}$
inductive $dep:$ show $P(n) \rightarrow P(n+1)$
assume $P(n): 2^n \ge n^2$ [inductive hypothesis]
 $2^{n+1} = 2 \cdot 2^n$
 $\ge 2n^2$ [by]
 $= n^2 + n^2$
 $\ge n^2 + 5n$ [since $n \ge 5$]
 $\ge h^2 + 2n + 1 = (n+1)^2$ QED.

eq. Fibonaci squence: $F_1 = 1$, $F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ for n > 21, 1, 2, 3, 5, 8, 13, 21, ...

- prove that $F_1 + F_3 + F_5 + ... + F_{2K-1} = F_{2K}$ for $n \ge 1$ basis : $p(1) : F_1 = 1 = F_2$
- inductive step: assume $F_1 + F_3 + ... F_{2K-1} = F_{2K}$ add F_{2K+1} to each side $F_1 + F_3 + ... + F_{2K-1} + F_{2K+1} = F_{2K+1} F_{2K+1}$ $= F_{2K+2}$

 $=F_{2(K+1)}$



e.g., prove that the maximum # of pieces into which we can divide
a circular pizza using n straight outs is
$$\frac{n^2+n+2}{2}$$

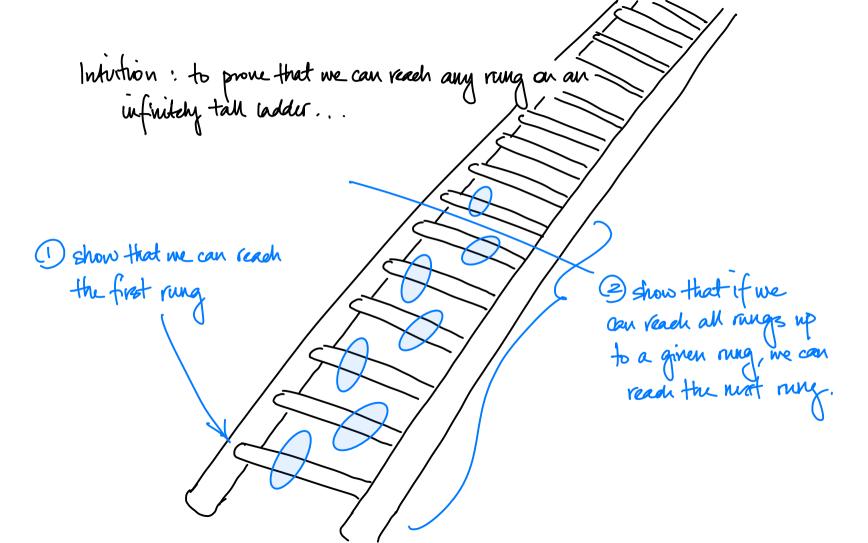
basis: 0 cuts = $\frac{0+0+2}{2} = 1$ piece $\sqrt{2}$
inductive step: assume for n cuts = $\frac{n^2+n+2}{2}$ pieces
for n+1 cuts = $\frac{n^2+n+2}{2} + n+1$
= $\frac{n^2+3n+4}{2} = \frac{n^2+2n+1+3}{2}$
= $\frac{(n+1)^2+(n+1)+2}{2}$

QED.

e.g., prome that all cats are the same size (also cats are higherd)

$$P(n)$$
: for any set of n cats, all the cats are higherd.
basis : $P(i) \vee$
inductive stop: assume $P(n)$
this works for $P(2) = 0$; $P(3)$, $P(3) = P(3)$, $P(3) = P(4)$, $P(4) = P(4)$, $P(4$

Strong induction is a variant of mathematical induction where we prove conjectures of the same form $(\forall n \in \mathbb{N} P(n))$, that up a different importants in the inductive stop: P(1) [banis] $(\forall K \leq n P(K)) \rightarrow P(n+1)$ [inductive dep] Yn P(n) [proof goal]



e.g., prove that any amount of
$$n \ge 8$$
 can be made with
demonstrations of 3 and 5
 $-5, +6$ $-9, +10$ $-5, +6$ $-5, +6$ $-9, +10$
 $8 = 3+5$ $9 = 3+3+3$ $10 = 5+5$ $1|=3+3+5$ $12 = 3+3+3+3$
tasis: $P(8) \vee$
induction Glep: show that $P(n) \rightarrow P(n+1)$
(weak assume $P(n)$; to satisfy $P(n+1)$
(weak assume $P(n)$; to satisfy $P(n+1)$
induction) Case 1: amount n use at least one S
 $-remove 5$, replace of two 3s
Case 2: amount n uses no Sc
 $-remove twee 3s$ (must exist, since
 $n \ge 8$) replace of two 5s

e.g., sprove that any amount of
$$n \ge 8$$
 can be made with
demonstrations of 3 and 5
 $-5,+6$ $-9,+10$ $-5,+6$ $-5,+6$ $-9,+10$
 $8 = 3+5$ $9 = 3+3+3$ $10 = 5+5$ $1[=3+3+5$ $12 = 3+3+3+3$
tasis: $P(8)$, $P(9)$, $P(10)$, $P(11)$, $P(12)$
inductine dep: assume $P(u)$ is true for $8 \le n \le k$, where $k > 12$
(strong induction) to make the amount $k+1$, we can structly
add $5 to k-4$, where $P(k-4)$ is true
due to the 1.H.

RED.

~

hist the first six terms in the range of f: IN -> IN, where f(o) = D $f(n+1) = 2 \cdot f(n) + n$

f(0) = 0 $f(3) = 2 \cdot 1 + 2 = 4$ f(4) = 2.4 + 3 = 1 $f(1) = 2 \cdot 0 + 0 = 0$ $f(5) = 2 \cdot 1 | 14 = 26$ $f(2) = 2 \cdot 0 + 1 = 1$

prove that this function evaluates to
$$2^{n}-n-1$$
 for all $n \in \mathbb{N}$
 $f(0) = D$
 $f(n+1) = 2 \cdot f(n) + n$
tasis: $f(0) = 2^{0}-D-1 = D$
inductive step: $f(n) = 2^{n}-n-1$ [inductive hypothesis]
 $f(n+1) = 2 \cdot (2^{n}-n-1) + n$
 $= 2^{n+1}-2n-2 + n$
 $= 2^{n+1}-n-2$
 $= 2^{n+1}-(n+1)-1$ QED.