
Induction & recursion
CS 330 :Discrete structures



Many conjectures have the form : An EMP

Mathematical induction is a technique for proving conjectures
of this form based on the rule of inference :
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32 > 25 ✓
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' [inductive hypothesis]
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e.g.
Fibonacci sequence
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e.g. , what is the maximum# of pieces into which we can
divide a circularpizza usingen straight arts ?

cats additional total

(n) pieces pieces
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creating n new pieces
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e-g., prone
that the maximum# of pieces into which we can divide

n't n t 2
a circular pizza using n straight

arts is-
Z

basis : O cuts = 0tOt2 = I piece V
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inductive step : assume for u cuts = n2tnzt2 pieces
for ntl outs =n22 t nt l
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e-g. , phone
that all cats are the same size (aka cats are liquid)

Pla) : for any sort of u cats ,
all the catsarethe samesin

.

basis : PH V

Tinductive sleep : assume Pcn)

② , Cz , . . . ,
Cn are the same size

this worksof ④ ,
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butwhat about
we kno Ice) QE)

pay →plz) ? - takecare tofish outall required
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strong induction is a variant of mathematical widvduin
where we prone conjectures of the same form (fnE IN PCn) ),
but up a different hypothesis in the widedine sleep :
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e.g . every integer n > I is either prime or a product of primes .
Pln) = n is eitherprime or a product of primes
basis : PG) - z is prime V

inductive shop : assume Pfk) is true for z
s k sn ( inductive

show Rnti) must hold
hypothesis]

case l : ntl is prime

case2 : UH is not prime
- this means there are two integers a, b
where n H = ab and 2 E a

,
b En

- a,
b are prime or product of primes (due
to I.H

.

) so nH is prime or productofprimes .

QED



e.g. , prove that any
amount of n28 can be made with

denominations of 3 and 5

6,
°s6, EE

f = 3+5 9 = 3+3+3 10=5+5 11 = 3+3 t5 12 = 3+3+3+3

basis : pls) V

inductive sleep : show that Pcn)
→Kuti)

(weak assume Pln) ; to satisfy Parti)
induction) case 1 : amount n uses at least one

5

- remove 5 , replace M two 3s

case 2: amount n uses no
5s QED .

- remove three 3s (must exist , since
n Z 8) replace M two 5s



e.g. , prove that any
amount of n28 can be made with

denominations of 3 and 5

6,
°s6, EE EE

f = 3+5 9 = 3+3+3 10=575 11=3+3 t5 12=3+3+3+3

i.it .
basis : PCs)

,
Pla)

,
Pho)

,
PUD , Paz) f

inductive sleep : assume Pcu) is
true for 8 En Ek , where k> 12

(strong induction) to make the amount ktl
,
we can simply

add 5 to K-4
,
where PCK-4) is true

due to the t.tt .

QED .



the approach used in a proof by mathematical induction can
also be used to define functions with domain IN .

e.g . flo) = I [ base can] } factorialfunction
f(nti) = (nti) . f(u) ( recursive definition] fun ,

n
!

such recursively defined functions are well -defined for
all values of the domain .

- induction is a great fit for proving properties of
functions defined in this way !



list the first six terms in the range off :iN→N , where

flo) -- O

f-(NH) -- 2. flu) th

f-6) = o f- (3) = 2 . I t 2=4

fll) = 2 - o to = O f(4) = 2.4 +3 = II

fly = 2 - o t I = I f- (5) = z - Ift 4=26



prone that this function evaluates to I - n - l for all n E IN

flo) = 0

f-(nti) -- 2. flu) t n

basis : flo) = 20- o - I = 0

inductive sleep : flu) = 2"- n - I [ inductive hypothesis]

flat D= 2. (2" - n - 1) tu
= zntl - zu - z tu
= zn

H
- u -Z

= It
'
- (n+ i) - I QED .


