Proofs and Rules of Inference CS 320: Discrete Structules

Lule: Modus Poneus (Latin: "mode that affirms")  
-taubology: 
$$((p>q) \land p) \Rightarrow q$$
  
 $p \Rightarrow q$  e.g., if the AC is on, I will be cold  
 $P$  the AC is on  
 $q$  therefore, I will be cold

Rule: Modus Tollens (Latin: "mode that denics")



Rule: Hypothetical Syllogism  

$$tamtology: ((p > q) \land (q > r)) \rightarrow (p > r)$$
  
 $p > q$  if  $l ead andy, l will be wired$   
 $q > r$  if  $l an wired, l and deep$   
 $p > r$  therefore, if  $l eat candy, l cand sleep$ 



I will not take ECON I will either take ECON or SOC

therefore, I will take SOC

Rule: Recolution tautology: ((pvg) ~ (~pvr)) -> (qvr) Pvg X < 10 or y >20 -pvr XZIO or Z<0 gvr ... y>20 or z<0

Rule: Addition  
tautology: 
$$p \rightarrow (p \lor q)$$
  
 $P \qquad 2+2=4$   
 $p \lor q \qquad 2+2=4$  or law a rodestar

Rule: Simplification / Decomposition tautology: (prg) >> p Prg Prg Prg Prg - norful for "breaking down" compound hypotheses

Rule: Conjunction / Construction  
tautology: 
$$((p) \land (q)) \rightarrow p \land q$$



We can also introduce known tourbologies based on  
preceding statements.  
E.g., using Disjunctive syllogisin toutology 
$$((\neg p \land (p \lor q)) \Rightarrow q)$$
  
 $\neg (a \land b) \land ((a \land b) \lor c)$   
 $\neg (a \land b) \land ((a \land b) \lor c) \Rightarrow c$ 

Eq., premises 
$$\begin{cases} \neg p \rightarrow (qnr) \\ p \rightarrow s \\ \neg s \end{cases}$$
  
 $prove : q$   
 $l. p \rightarrow s (premise)$   
 $2. \neg s (premise)$   
 $3. \neg p (modus tolkus)$   
 $4. \neg p \rightarrow (qnr) (premise)$   
 $5. qnr (modus ponens)$   
 $6. q (simplification)$ 

E.g., premises 
$$\begin{cases} P \land q \\ P \gg \neg (q \land r) \\ S \Rightarrow r \end{cases}$$
  
prove:  $7 \le$   
1.  $P \land q$  (premise) 7.  $\neg r$  (Dig. syllegism)  
2.  $P$   $(singulfication)$  8.  $S \Rightarrow r$  (premise)  
3.  $q$   $(singulfication)$  8.  $S \Rightarrow r$  (premise)  
4.  $P \Rightarrow \neg (q \land r)$  (premise) 9.  $\neg S$  (modus tollens)  
5.  $\neg (q \land r)$  (modus ponens)  
6.  $\neg q \lor \neg r$  (De Morgans)

Rules of inférence for quantified Aakments: ¥xP(x) - universal instantiation (UI): P(c) P(c) for arbotrany C - universal generalization (UG): YXP(X) - existential instantiation (51): JXP(X) P(c) for some C - existential generalization (EG): P(c) for some c (x) q x E

Eq. premises 
$$\begin{cases} \forall x (P(x) \rightarrow (Q(x) \land S(x))) \\ \forall x (P(x) \land R(x)) \end{cases}$$
  
prove :  $\forall x (R(x) \land S(x))$   
1.  $\forall x (P(x) \land R(x)) (premix)$  7.  $S(c) (simpl.)$   
2.  $P(c) \land R(c) (UI)$  8.  $R(c) (simpl.)$   
3.  $P(c) (simplification)$  9.  $R(c) \land S(c) (ani)$   
4.  $\forall x (P(x) \rightarrow (Q(x) \land S(x))) (premix)$  10.  $\forall x (R(x) \land S(x))$   
5.  $P(c) \rightarrow (Q(c) \land S(c)) (UI) (UG)$   
6.  $Q(c) \land S(c) (MP)$ 

 $(R(x) \land S(x))$ 

(UG)

Note: mathematical theorems are offen stated using free  
variables in its hypotheses and condussion, and  
universal quantification over these free variables is implied.  
E.g., Conjecture: if 
$$n > 4$$
 then  $2^n > n^2$   
 $F(n)$  Q(n)  
i.e.,  $P(n) \rightarrow Q(n)$  for arbitrary n  
universal generalisation:  
we want to prove  $Hn(P(n) \rightarrow Q(n))$   
"form "of proof goal:  $p \rightarrow g$ 

Methods of Proof of form 
$$p \Rightarrow q$$
  
3. Dired proof: assume p; prove q  
- use axioms, rules of inference, equivalences  
4. Indired proof  
a) proof of the contrapositive (recall  $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$ )  
- assume  $\neg q'$ , prove  $\neg p$   
b) proof by contradiction  
- assume  $p \land \neg q'$ ; derive a contradiction (e.g., rurr)

Methods of Proof of other forms 5. proof of ticonditional p <> q -prove p>q and q>p 6. proof of conjunction prog -prove pand q separately. 7. if hypothesis is a disjunction, e.g., (p, vp2 v... vpk) > g -un equivalence  $(p \vee q) \rightarrow r \equiv (p \rightarrow r) \wedge (q \rightarrow r)$  $-(p_1 \vee p_2 \vee \cdots \vee p_k) \rightarrow g \equiv (p_1 \rightarrow g) \wedge (p_2 \rightarrow g) \wedge \cdots \wedge (p_k \rightarrow g)$ - prove each case \_\_\_\_\_\_ separately.

Methods of Proof involving quantifiers  
8. proof of form 
$$\forall x P(x)$$
  
- show  $P(c)$  for abittary  $c$   
9. proof of form  $\neg \forall x P(x) \equiv \exists x \neg P(x)$   
- find a connectenangle  $c$  where  $\neg P(c)$   
9. proof of form  $\exists x P(x) - \text{"existence proof"}$   
- "constructive" proof : find  $c$  where  $P(c)$   
- "housonetructive" proof : assume no  $c$  exists where  $P(c)$ ;  
durine a contradiction.

•

Many others! - mathematical induction - Arnotural induction - cantor diagonalization - Combinatorial proofs - etc.

E.g. Dired Proof For all integers x, if x is odd (i.e., we can write it as 2y+1, where y is an integer), thun  $x^2$  is also odd. proof ! - let x tr an arbotrary integre -x is odd, so x = 2y+1 $-x^{2} = (2y+1)^{2} = 4y^{2} + 4y + 1 = 2(2y^{2} + 2y) + 1$ -  $2y^2 + 2y$  is also an integer z; i.e.  $x^2 = 2z + 1$ . x2 is odd

E.g., proof of toconditional/conjunction/cases, by contropositive For all integers x, x<sup>2</sup> is odd if and only if x is odd. much show (xic odd -> x2 is odd) ~ (x2 is odd -> xis odd) proof: already proved! handle second case - try contraposition: X is even -> X<sup>2</sup> is even - if x is even, we can write it as 2y  $-x^{2} = 4y^{2} = 2(2y^{2}) = 2z$ -'- X<sup>2</sup> is even -- X is odd  $\iff X^2$  is odd

E.g. proof by contradiction There are infinitely many prime numbers Proof: - assume there is a finite het of primes P1, pz, ..., Pn  $-let m = p_1 \times p_2 \times \dots \times p_n + |$ -m is not divisible by p. (would give quotient of p2x.-×pn, remainder o(1) also not divisible by p2,..., pn - all integers > 1 are either prime or a product of primes, - m is either a new prime or a product of a prime not in our lest - but this contradiots our assumption of a finite her of primes! -'. there are infinitely many primes.