
Predicate logic
CS 330 : Discrete structures



Predicate logic adds variables , predicates , and quantifies
to propositional logic .

e.g . propositional logic :
p :

"John likes cake .

"

q
:
" Jane likes cake

"

e.g . predicate logic :
PG) :

"

x likes cake
"

Ix PLx) :
"

there exists x such that x likes cake
"



A predicate is a statement that is True or False ,
depending on the value of one or more variables
[
taken from the domain or

" universe of discourse
"

A predicate PG , y . . .) can bethought of as a

propiosdioual function that
evaluates to TIF ,

based on

its inputs x , y . . . .



e.g
- PG) : x Clo and X is prime
PG ) ?

P (9) ?

Phi) ?

Pbo) ?

P (5) V plus) ?

Ptt) n p Clo) ?

p( 1)→ PG2) ?



e.g .

Qlx
, y , z)

: x t y
= z

Q( l
,
2
, 3) ?

Q(3 ,-1,4) ?

Q(2,4 ,7) → Q(3,4 ,7) ?



A quantifier spiafies how
many values from the

domain
,

when assigned to a particular variable, satisfy a predicate

most important quantifiers :
- universal quantifier : t - ' ' for all "

- existential quantifier : I -
"

there exists
"



E.g. ,Yquantifiers bind the variable ×

✓

VyP"

For all xi, PG) is True .

"

axeCA :
"
there e

:If Iff 'YFhI)
note : important to specify the domain !

(we'll discuss different ways of doing this )



Quantifiers can be thought of as looping over
values in the domain .

- V x PLA hoops overall x in domain
- onlytrue if PG) is true forall iterations
- if any x causes PG) to be false , terminate iffalse

- F x PG) loops over all x in domain

- if we find PCx) true for some x , terminal of true
- if hop terminates go find PG) true for any× ,

evaluates to false



Quantifiers can also be considered wi terms of logical
conjunctions(disjunctions ( for finite domains)

- V x PLA is the logical conjunction of PK) for all x

ie
.

,
it xpLx ) a Cx)

- F x PG) is the logical distinction of Phx) forallx

ie
.

.
IxpCx) re IPG)



On Precedence

tf and I have higher precedence than all logical operators !

E.g . IxpCx) v QQ) = f-x PK)) v QCx)

it x PCx) v QCx) ¥ itx (PG) v QQ))



We can come up up
other quantifiers . . .

e.g. ,
' ' there are exactly N values . . .

"

"

for the majority of values . .
.

" (assuming finite domain)
" there is a unique value .

. .

"

but we can express most
otherquantifiers using

propositional operators .



Uniqueness Quantifier
"
I !

"

I ! x PG) :

"

There is a unique x such that PG) .
"

e.g . PCx) : Xt lo = 0 ,
domain isI

7- ! x PCx) ? T

e.g . pcx) : X LO
,
domain is I

7- ! xxx) ? F



Express F ! in terms of F and it :

I ! xp Cx) = Fx (PK) n Hy ( ply)→ y-- x))
9

"needed
"quantifier



Translating from English to logic
E.
g .
"

Every student in es 330 can program
in Java

"

① Assume domain of x is students in CS 330

Phx) :
"
x can program

in Java
"

t XPCx)

② Assume domain of X is all students

Q(x) : " x is a student in CS 330
"

t x (QCx)→p Cx)) ( tx (QLx) nPK))
is wrong !



Translating from English to logic
E.
g .
" some student in es 330 can program in Java

"

① Assume domain of x is students in CS 330

Phx) :
"
x can program

in Java
"

Ix PG)

② Assume domain of X is all students

Q(x) : " x is a student wi CS 330
"

Fx (PK) n QLX)) ( tx (pix)→ QCx))
is wrong !



Negating Quantifiers .

E.g . PG) :
"
x loves honey

"

i domain of x is all bees

tfxplx) :
" all bees love honey

"

t tf x PG) :
"

it is not true that all bees love honey
"

¥ " all bees do not lone honey
"

I
'' there is a bee that doesn't hone honey

"

i.e.
,
n fxp(x) = 7×4 pcx))



De Morgan 's Laws for Quantifiers

- ttxpcx) E Ix nPG)

> Fxplx) = txt PK)



Example - domain = { fhegles , snurds , thingamabobs }

FG) : x is a fleegle
S (x) : x is a sward

1-(x) : x is a thingamabob

Translate "

Everything is a fleegle
"

t x thx)



Example - domain = { fhegles , snurds , thingamabobs }

FG) : x is a fleegle
S (x) : x is a sward

1-(x) : x is a thingamabob

Translate "

Nothing is a snurd
"

Fx 7 S(x)

E n Ix s (x )



Example - domain = { fhegles , snurds , thingamabobs }

FG) : x is a fleegle
S (x) : x is a sward

1-(x) : x is a thingamabob

Translate ' ' All fteegles are swords
"

V- x (F Cx)→ sCx))



Example - domain = { fhegles , snurds , thingamabobs }

FG) : x is a fleegle
S (x) : x is a sward

1-(x) : x is a thingamabob

Translate " some fleegle are thingamabobs
"

7-x (Hx) nTG))



Example - domain = { fhegles , snurds , thingamabobs }

FG) : x is a fleegle
S (x) : x is a sward

1-(x) : x is a thingamabob

Translate " No snurd is a thingamabob
"

7 Fx (Stx) rTG)) Tx (sext →Hix))
l l l

t x G s Cx) v TTCx))
"



Example - domain = { fhegles , snurds , thingamabobs }

FG) : x is a fleegle
S (x) : x is a sward

1-(x) : x is a thingamabob

Translate " If any fleegle is a sward then
'

it is also a thingamabob
"

tx (Hx) ask))→Tk))



Validity 's, satisfiability
- an assertion involving predicates t quantifiers is valid
if it is true for all domains , and all possible predicates
e.

g. ,
t x nPK)⇐ a Fx Hx)

- an assertion is satisfiable if it is only true for some
domains and predicates
e.g. , it x (PG)⇒ QCx))
- otherwise I it is unsatisfiable

e.g. , itx (PG) n nPG))



Needed Quantifiers
- quantifiers that appear upin the scope of other quantifiers

e.g
. itx F

y PG .g)
"for enemy x ,

there exists a
y for

which Pex ,g) is true
"



Needed Quantifiers
- can be thought of as needed loops - for each value
of the variable bound by the outside quantifier , step through
all values of inner quaitficis
-order matters !
e.

g . P Cx , y)
: x t y

= 0 ; x , y from IR

txt y PG , y) = T

F- yhtx Play) = F



Given : L (x , y)
:
"
x loves y

"

Express the following using quantifiers :

-

"

Everybody loves somebody
"
:

txt y
LG .y)

-

"

There is someone whom everybody tones .
"

:

Fx Hy ily ,
x)

-

"

Nobody loves everybody
"

- FxTy thx , y ) or txt y
-LK ,y)



Negating needed quantifiers :
- rewrite the following so that negations only appear
directly in front of predicates
itxt y

PG ,y)

F xFyn Play)
- ftxF yr play) rt x Vy (Q Cx ,y) v i r Cx ,y)))
txt
y Play) v FxFyfe Qlx ,y) nRG ,y))



given : T Cs ,c) : students has taken class c

domain of s = all HT students
domain of a = all CS classes

Translate to English :

Fx (T (Michael , x) RT(Shannon ,x))

" There is a class that both Michael and

Shannon have taken .

"



given : T (s ,c) : students has taken class c

domain of s = all HT students
domain of a = all CS classes

Translate to English :

F*y (x f
Michael nG(Michael , y) →T(x , y)))

"
There is a student who has taken all the

classes Michael has taken .

"



given : T (s ,c) : students has taken class c

domain of s = all HT students
domain of a = all CS classes

Translate to English :

Fx Fytz ((x ty) nGGal⇐ Tly ,z)))
"
There are two separate students that
have taken precisely the same classes .

"


