Predicate Logic

CS 330: Discrete Structures
Predicate logic adds variables, predicates, and quantifiers to propositional logic.

e.g. propositional logic:

\[p: \text{"John likes cake."} \quad q: \text{"Jane likes cake"} \]

e.g. predicate logic:

\[P(x): \text{"x likes cake"} \]

\[\exists x \ P(x): \text{"there exists x such that x likes cake"} \]
A predicate is a statement that is True or False, depending on the value of one or more variables taken from the domain or "universe of discourse."

A predicate \(P(x, y, \ldots) \) can be thought of as a propositional function that evaluates to T/F, based on its inputs \(x, y, \ldots \).
eq. \(P(x) \): \(x < 10 \) and \(x \) is prime

\[
\begin{align*}
P(3) & \?
\P(9) & ?
\P(11) & ?
P(20) & \?
P(5) \lor P(20) & \? \\
P(7) \land P(10) & \? \\
P(1) \rightarrow P(12) & ?
\end{align*}
\]
e.g. \(Q(x, y, z) : x + y = z \)

\[Q(1, 2, 3) \]
\[Q(3, -1, 4) \]
\[Q(2, 4, 7) \rightarrow Q(3, 4, 7) \]
A quantifier specifies how many values from the domain, when assigned to a particular variable, satisfy a predicate.

Most important quantifiers:
- universal quantifier: ∀ — "for all"
- existential quantifier: ∃ — "there exists"
Eq. 1

\(\forall x \, P(x) \) : "For all \(x \) in the domain, \(P(x) \) is True."

\(\exists x \, P(x) \): "There exists some \(x \) in the domain such that \(P(x) \) is True."

Note: Important to specify the domain!

(We'll discuss different ways of doing this.)
Quantifiers can be thought of as looping over values in the domain.

- $\forall x P(x)$ loops over all x in the domain
 - only true if $P(x)$ is true for all iterations
 - if any x causes $P(x)$ to be false, terminate with false

- $\exists x P(x)$ loops over all x in the domain
 - if we find $P(x)$ true for some x, terminate with true
 - if loop terminates without finding $P(x)$ true for any x, evaluates to false
Quantifiers can also be considered in terms of logical conjunctions/disjunctions (for finite domains)

- \(\forall x \, P(x) \) is the logical conjunction of \(P(x) \) for all \(x \)

 \[\text{i.e., } \forall x \, P(x) \equiv \bigwedge_x P(x) \]

- \(\exists x \, P(x) \) is the logical disjunction of \(P(x) \) for all \(x \)

 \[\text{i.e., } \exists x \, P(x) \equiv \bigvee_x P(x) \]
On Precedence

∀ and ∃ have higher precedence than all logical operators!

E.g. \(∀x \, P(x) \lor Q(x) \equiv (∀x \, P(x)) \lor Q(x) \)

\(∀x \, P(x) \lor Q(x) \neq ∀x \, (P(x) \lor Q(x)) \)
We can come up with other quantifiers ... e.g., "there are exactly \(N \) values ..."

"for the majority of values ..." (assuming finite domain)

"there is a unique value ..."

but we can express most other quantifiers using propositional operators.
Uniqueness Quantifier “\(\exists ! \)”

\(\exists ! x \ P(x) \) : "There is a unique \(x \) such that \(P(x) \)."

e.g. \(P(x) : x + 10 = 0 \), domain is \(\mathbb{Z} \)

\(\exists ! x \ P(x) \) ? \(T \)

e.g. \(P(x) : x < 0 \), domain is \(\mathbb{Z} \)

\(\exists ! x \ P(x) \) ? \(F \)
Express \(\exists! x \) in terms of \(\exists \) and \(\forall \):

\[
\exists! x \in \mathbb{R} \mid \exists x (P(x) \land \forall y (P(y) \rightarrow y = x))
\]

"needed" quantifier
Translating from English to logic

E.g. "Every student in CS 330 can program in Java"

1. Assume domain of x is students in CS 330

 $P(x)$: " x can program in Java"

 \[
 \forall x \ P(x)
 \]

2. Assume domain of x is all students

 $Q(x)$: " x is a student in CS 330"

 \[
 \forall x \ (Q(x) \rightarrow P(x)) \quad (\forall x \ (Q(x) \land P(x)))
 \]

 is wrong!
Translating from English to logic

E.g. "Some student in CS 330 can program in Java"

1. Assume domain of x is students in CS 330

 $P(x): "x$ can program in Java"

 $\exists x \ P(x)$

2. Assume domain of x is all students

 $Q(x): "x$ is a student in CS 330"

 $\exists x \ (P(x) \land Q(x)) \quad (\forall x \ (P(x) \to Q(x)))$

 is wrong!
Negating Quantifiers.

E.g. \(P(x) \): "\(x \) loves honey" ; domain of \(x \) is all bees

\[\forall x \ P(x) : \text{"all bees love honey"} \]

\[\neg \forall x \ P(x) : \text{"it is not true that all bees love honey"} \]

\[\not\equiv \text{"all bees do not love honey"} \]

\[\equiv \text{"there is a bee that doesn't love honey"} \]

i.e., \(\neg \forall x \ P(x) \equiv \exists x (\neg P(x)) \)
De Morgan’s Laws for Quantifiers

\[\neg \forall x P(x) \equiv \exists x \neg P(x) \]

\[\neg \exists x P(x) \equiv \forall x \neg P(x) \]
Example — domain = \{ \text{fleegles, snurds, thingamabobs} \}

\begin{align*}
F(x) & : x \text{ is a fleegle} \\
S(x) & : x \text{ is a snurd} \\
T(x) & : x \text{ is a thingamabob}
\end{align*}

Translate “Everything is a fleegle.”

\[\forall x \ F(x) \]
Example — domain = \{\text{fleegles, snurds, thingamabobs}\}

\begin{align*}
F(x) & : x \text{ is a fleegle} \\
S(x) & : x \text{ is a snurd} \\
T(x) & : x \text{ is a thingamabob}
\end{align*}

Translate "Nothing is a snurd:"

\[
\forall x \neg S(x) \\
\equiv \neg \exists x S(x)
\]
Example — domain = \{fleegles, snurds, thingamabobs\}

\[F(x) : x \text{ is a fleegle} \]
\[S(x) : x \text{ is a snurd} \]
\[T(x) : x \text{ is a thingamabob} \]

Translate “All fleegles are snurds”

\[\forall x \,(F(x) \rightarrow S(x)) \]
Example — domain = \{ \text{fieegles, snurds, thingamabobs} \}

F(x) : x \text{ is a fieegle}

S(x) : x \text{ is a snurd}

T(x) : x \text{ is a thingamabob}

Translate "Some fieegles are thingamabobs"

\exists x (F(x) \land T(x))
Example — domain = \{ \text{fleegles, snurds, thingamabobs} \}

\begin{align*}
F(x) & : x \text{ is a fleegle} \\
S(x) & : x \text{ is a snurd} \\
T(x) & : x \text{ is a thingamabob}
\end{align*}

Translate "No snurd is a thingamabob"!

\[
\neg \exists x (S(x) \land T(x)) \quad \forall x (S(x) \Rightarrow \neg T(x)) \\
\quad \equiv \quad \forall x (\neg S(x) \lor \neg T(x))
\]
Example — domain = \{ \text{fiegeles, snurds, thingamabobs} \}

F(x) : x is a fiegle
S(x) : x is a snurd
T(x) : x is a thingamabob

Translate “If any fiegle is a snurd then it is also a thingamabob”

\forall x ((F(x) \land S(x)) \rightarrow T(x))
Validity vs Satisfiability

- an assertion involving predicates + quantifiers is valid if it is true for all domains, and all possible predicates
 \[\forall x \neg P(x) \iff \neg \exists x P(x) \]

- an assertion is satisfiable if it is only true for some domains and predicates
 \[\forall x (P(x) \iff Q(x)) \]

- otherwise, it is unsatisfiable
 \[\forall x (P(x) \land \neg P(x)) \]
Nested Quantifiers

- quantifiers that appear within the scope of other quantifiers

E.g.: \(\forall x \exists y P(x, y) \)

"for every x, there exists a y for which \(P(x, y) \) is true"
Nested Quantifiers

- can be thought of as nested loops — for each value of the variable bound by the outside quantifier, step through all values of inner quantifiers

— order matters!

e.g. $P(x, y) : x + y = 0 \ ; x, y$ from TR

\[\forall x \exists y \ P(x, y) = T \]

\[\exists y \forall x \ P(x, y) = F \]
Given: \(L(x, y) : "x \text{ loves } y" \)

Express the following using quantifiers:

- "Everybody loves somebody":
 \[\forall x \exists y L(x, y) \]

- "There is someone whom everybody loves."
 \[\exists x \forall y L(y, x) \]

- "Nobody loves everybody"
 \[\neg \exists x \forall y L(x, y) \text{ or } \forall x \forall y L(x, y) \]
Negating nested quantifiers:

- rewrite the following so that negations only appear directly in front of predicates

\[
\neg \forall x \forall y \, P(x, y) \\
\exists x \exists y \, \neg P(x, y) \\
\neg (\exists x \exists y \, \neg P(x, y) \land \forall x \forall y \, (Q(x, y) \lor \neg R(x, y))) \\
\forall x \forall y \, P(x, y) \lor \exists x \exists y \, (\neg Q(x, y) \land R(x, y))
\]
Given: \(T(s, c) \): student \(s \) has taken class \(c \)

- domain of \(s \) = all IIT students
- domain of \(c \) = all CS classes

Translate to English:

\[
\exists x (T(Michael, x) \land T(Shannon, x))
\]

“There is a class that both Michael and Shannon have taken.”
Given: \(T(s,c) \): student \(s \) has taken class \(c \)

- domain of \(s \) = all IIT students
- domain of \(c \) = all CS classes

Translate to English:

\[
\exists x \forall y \left(x \neq \text{Michael} \land (T(\text{Michael}, y) \implies T(x, y)) \right)
\]

"There is a student who has taken all the classes Michael has taken."
Given: \(T(s,c) \): student \(s \) has taken class \(c \)

- domain of \(s \) = all IIT students
- domain of \(c \) = all CS classes

Translate to English:

\[\exists x \exists y \forall z \left((x \neq y) \land (T(x, z) \leftrightarrow T(y, z)) \right) \]

"There are two separate students that have taken precisely the same classes."