Exercises from Section 13.1: (4), (5)

- **4.** Let G = (V, T, S, P) be the phrase-structure grammar with $V = \{0, 1, A, S\}$, $T = \{0, 1\}$, and set of productions *P* consisting of $S \rightarrow 1S$, $S \rightarrow 00A$, $A \rightarrow 0A$, and $A \rightarrow 0$.
 - a) Show that 111000 belongs to the language generated by *G*.
 - **b**) Show that 11001 does not belong to the language generated by *G*.
 - c) What is the language generated by *G*?

- **5.** Let G = (V, T, S, P) be the phrase-structure grammar with $V = \{0, 1, A, B, S\}$, $T = \{0, 1\}$, and set of productions *P* consisting of $S \rightarrow 0A$, $S \rightarrow 1A$, $A \rightarrow 0B$, $B \rightarrow 1A$, $B \rightarrow 1$.
 - a) Show that 10101 belongs to the language generated by *G*.
 - **b**) Show that 10110 does not belong to the language generated by *G*.
 - c) What is the language generated by G?

Exercises from Section 13.3: (11), (17), (19)

FIGURE 1 The state diagram for a finite-state automaton.

11. Determine whether each of these strings is recognized by the deterministic finite-state automaton in Figure 1.
a) 111 b) 0011 c) 1010111 d) 011011011

In Exercises 16–22 find the language recognized by the given deterministic finite-state automaton.

Solution for Section 13.1: (4)

4. a) It suffices to give a derivation of this string. We write the derivation in the obvious way. $S \Rightarrow 1S \Rightarrow 11S \Rightarrow 111S \Rightarrow 11100A \Rightarrow 111000$.

b) Every production results in a string that ends in S, A, or 0. Therefore this string, which ends with a 1, cannot be generated.

c) Notice that we can have any number of 1's at the beginning of the string (including none) by iterating the production $S \to 1S$. Eventually the S must turn into 00A, so at least two 0's must come next. We can then have as many 0's as we like by using the production $A \to 0A$ repeatedly. We must end up with at least one more 0 (and therefore a total of at least three 0's) at the right end of the string, because the A disappears only upon using $A \to 0$. So the language generated by G is the set of all strings consisting of zero or more 1's followed by three or more 0's. We can write this as $\{0^n1^m \mid n \ge 0 \text{ and } m \ge 3\}$.