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The Backus–Naur form, with a variety of extensions, is used extensively to specify the
syntax of programming languages, such as Java and LISP; database languages, such as SQL;
and markup languages, such as XML. Some extensions of the Backus–Naur form that are com-
monly used in the description of programming languages are introduced in the preamble to
Exercise 34.

Exercises

Exercises 1–3 refer to the grammar with start symbol sen-
tence, set of terminals T = {the, sleepy, happy, tortoise, hare,
passes, runs, quickly, slowly}, set of nonterminals N = {noun
phrase, transitive verb phrase, intransitive verb phrase,
article, adjective, noun, verb, adverb}, and productions:

sentence → noun phrase transitive verb phrase
noun phrase

sentence → noun phrase intransitive verb phrase
noun phrase → article adjective noun
noun phrase → article noun
transitive verb phrase → transitive verb
intransitive verb phrase → intransitive verb adverb
intransitive verb phrase → intransitive verb
article → the

adjective → sleepy
adjective → happy
noun → tortoise
noun → hare
transitive verb → passes
intransitive verb → runs
adverb → quickly
adverb → slowly

1. Use the set of productions to show that each of these sen-
tences is a valid sentence.
a) the happy hare runs
b) the sleepy tortoise runs quickly
c) the tortoise passes the hare
d) the sleepy hare passes the happy tortoise

2. Find five other valid sentences, besides those given in
Exercise 1.

3. Show that the hare runs the sleepy tortoise is not a valid
sentence.

4. Let G = (V, T, S, P) be the phrase-structure grammar
with V = {0, 1, A, S}, T = {0, 1}, and set of produc-
tions P consisting of S → 1S, S → 00A, A → 0A,
and A → 0.
a) Show that 111000 belongs to the language generated

by G.
b) Show that 11001 does not belong to the language gen-

erated by G.
c) What is the language generated by G?

5. Let G = (V, T, S, P) be the phrase-structure grammar with
V = {0, 1, A, B, S}, T = {0, 1}, and set of productions
P consisting of S → 0A, S → 1A, A → 0B, B → 1A,
B → 1.
a) Show that 10101 belongs to the language generated

by G.
b) Show that 10110 does not belong to the language gen-

erated by G.
c) What is the language generated by G?

∗6. Let V = {S, A, B, a, b} and T = {a, b}. Find the language
generated by the grammar (V, T, S, P) when the set P of
productions consists of
a) S → AB, A → ab, B → bb.
b) S → AB, S → aA, A → a, B → ba.
c) S → AB, S → AA, A → aB, A → ab, B → b.
d) S → AA, S → B, A → aaA, A → aa, B → bB, B → b.
e) S → AB, A → aAb, B → bBa, A → !, B → !.

7. Construct a derivation of 0313 using the grammar given
in Example 5.

8. Show that the grammar given in Example 5 generates the
set {0n1n ∣ n = 0, 1, 2,…}.

9. a) Construct a derivation of 0214 using the grammar G1in Example 6.
b) Construct a derivation of 0214 using the grammar G2in Example 6.

10. a) Show that the grammar G1 given in Example 6 gen-
erates the set {0m1n ∣ m, n = 0, 1, 2,…}.

b) Show that the grammar G2 in Example 6 generates
the same set.

11. Construct a derivation of 021222 in the grammar given in
Example 7.

∗12. Show that the grammar given in Example 7 generates the
set {0n1n2n ∣ n = 0, 1, 2,…}.

13. Find a phrase-structure grammar for each of these lan-
guages.
a) the set consisting of the bit strings 0, 1, and 11
b) the set of bit strings containing only 1s
c) the set of bit strings that start with 0 and end with 1
d) the set of bit strings that consist of a 0 followed by an

even number of 1s
14. Find a phrase-structure grammar for each of these lan-

guages.
a) the set consisting of the bit strings 10, 01, and 101
b) the set of bit strings that start with 00 and end with

one or more 1s
c) the set of bit strings consisting of an even number

of 1s followed by a final 0
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s0 goes just to s1 and s2 goes just to s4 on input of 1 in the nondeterministic machine; and the
set {s1, s4} goes to {s3} on input of 0, because s1 and s4 both go to just s3 on input of 0 in the
deterministic machine. All subsets that are obtained in this way are included in the deterministic
finite-state machine. Note that the empty set is one of the states of this machine, because it is
the subset containing all the next states of {s3} on input of 1. The start state is {s0}, and the set
of final states are all those that include s0 or s4. ◂

Exercises

1. Let A = {0, 11} and B = {00, 01}. Find each of these
sets.
a) AB b) BA c) A2 d) B3

2. Show that if A is a set of strings, then A∅ = ∅A = ∅.
3. Find all pairs of sets of strings A and B for which AB =

{10, 111, 1010, 1000, 10111, 101000}.
4. Show that these equalities hold.

a) {!}∗ = {!}
b) (A∗)∗ = A∗ for every set of strings A

5. Describe the elements of the set A∗ for these values of A.
a) {10} b) {111} c) {0, 01} d) {1, 101}

6. Let V be an alphabet, and let A and B be subsets of V∗.
Show that |AB| ≤ |A||B|.

7. Let V be an alphabet, and let A and B be subsets of V∗

with A ⊆ B. Show that A∗ ⊆ B∗.
8. Suppose that A is a subset of V∗, where V is an alphabet.

Prove or disprove each of these statements.
a) A ⊆ A2 b) if A = A2, then ! ∈ A
c) A{!} = A d) (A∗)∗ = A∗

e) A∗A = A∗ f ) |An| = |A|n
9. Determine whether the string 11101 is in each of these

sets.
a) {0, 1}∗ b) {1}∗{0}∗{1}∗
c) {11} {0}∗{01} d) {11}∗{01}∗
e) {111}∗{0}∗{1} f ) {11, 0} {00, 101}

10. Determine whether the string 01001 is in each of these
sets.
a) {0, 1}∗ b) {0}∗{10}{1}∗
c) {010}∗{0}∗{1} d) {010, 011} {00, 01}
e) {00} {0}∗{01} f ) {01}∗{01}∗

11. Determine whether each of these strings is recognized
by the deterministic finite-state automaton in Figure 1.
a) 111 b) 0011 c) 1010111 d) 011011011

12. Determine whether each of these strings is recognized
by the deterministic finite-state automaton in Figure 1.
a) 010 b) 1101 c) 1111110 d) 010101010

13. Determine whether all the strings in each of these sets are
recognized by the deterministic finite-state automaton in
Figure 1.
a) {0}∗ b) {0} {0}∗ c) {1} {0}∗
d) {01}∗ e) {0}∗{1}∗ f ) {1} {0, 1}∗

14. Show that if M = (S, I, f, s0, F) is a deterministic finite-
state automaton and f (s, x) = s for the state s ∈ S and the
input string x ∈ I∗, then f (s, xn) = s for every nonnega-
tive integer n. (Here xn is the concatenation of n copies
of the string x, defined recursively in Exercise 37 in
Section 5.3.)

15. Given a deterministic finite-state automaton M =
(S, I, f, s0, F), use structural induction and the recur-
sive definition of the extended transition function f to
prove that f (s, xy) = f (f (s, x), y) for all states s ∈ S and
all strings x ∈ I∗ and y ∈ I∗.

In Exercises 16–22 find the language recognized by the given
deterministic finite-state automaton.

16.

s0
Start s1

1 s2
0 1 

0, 1

0

17. s0
Start s1

1 0, 1 0, 1 s2

0

18.

s0Start s10 s20 0, 1

1

1

19.

s0
Start s1

1 s2
0 0, 1

1

0
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The Backus–Naur form, with a variety of extensions, is used extensively to specify the
syntax of programming languages, such as Java and LISP; database languages, such as SQL;
and markup languages, such as XML. Some extensions of the Backus–Naur form that are com-
monly used in the description of programming languages are introduced in the preamble to
Exercise 34.

Exercises

Exercises 1–3 refer to the grammar with start symbol sen-
tence, set of terminals T = {the, sleepy, happy, tortoise, hare,
passes, runs, quickly, slowly}, set of nonterminals N = {noun
phrase, transitive verb phrase, intransitive verb phrase,
article, adjective, noun, verb, adverb}, and productions:

sentence → noun phrase transitive verb phrase
noun phrase

sentence → noun phrase intransitive verb phrase
noun phrase → article adjective noun
noun phrase → article noun
transitive verb phrase → transitive verb
intransitive verb phrase → intransitive verb adverb
intransitive verb phrase → intransitive verb
article → the

adjective → sleepy
adjective → happy
noun → tortoise
noun → hare
transitive verb → passes
intransitive verb → runs
adverb → quickly
adverb → slowly

1. Use the set of productions to show that each of these sen-
tences is a valid sentence.
a) the happy hare runs
b) the sleepy tortoise runs quickly
c) the tortoise passes the hare
d) the sleepy hare passes the happy tortoise

2. Find five other valid sentences, besides those given in
Exercise 1.

3. Show that the hare runs the sleepy tortoise is not a valid
sentence.

4. Let G = (V, T, S, P) be the phrase-structure grammar
with V = {0, 1, A, S}, T = {0, 1}, and set of produc-
tions P consisting of S → 1S, S → 00A, A → 0A,
and A → 0.
a) Show that 111000 belongs to the language generated

by G.
b) Show that 11001 does not belong to the language gen-

erated by G.
c) What is the language generated by G?

5. Let G = (V, T, S, P) be the phrase-structure grammar with
V = {0, 1, A, B, S}, T = {0, 1}, and set of productions
P consisting of S → 0A, S → 1A, A → 0B, B → 1A,
B → 1.
a) Show that 10101 belongs to the language generated

by G.
b) Show that 10110 does not belong to the language gen-

erated by G.
c) What is the language generated by G?

∗6. Let V = {S, A, B, a, b} and T = {a, b}. Find the language
generated by the grammar (V, T, S, P) when the set P of
productions consists of
a) S → AB, A → ab, B → bb.
b) S → AB, S → aA, A → a, B → ba.
c) S → AB, S → AA, A → aB, A → ab, B → b.
d) S → AA, S → B, A → aaA, A → aa, B → bB, B → b.
e) S → AB, A → aAb, B → bBa, A → !, B → !.

7. Construct a derivation of 0313 using the grammar given
in Example 5.

8. Show that the grammar given in Example 5 generates the
set {0n1n ∣ n = 0, 1, 2,…}.

9. a) Construct a derivation of 0214 using the grammar G1in Example 6.
b) Construct a derivation of 0214 using the grammar G2in Example 6.

10. a) Show that the grammar G1 given in Example 6 gen-
erates the set {0m1n ∣ m, n = 0, 1, 2,…}.

b) Show that the grammar G2 in Example 6 generates
the same set.

11. Construct a derivation of 021222 in the grammar given in
Example 7.

∗12. Show that the grammar given in Example 7 generates the
set {0n1n2n ∣ n = 0, 1, 2,…}.

13. Find a phrase-structure grammar for each of these lan-
guages.
a) the set consisting of the bit strings 0, 1, and 11
b) the set of bit strings containing only 1s
c) the set of bit strings that start with 0 and end with 1
d) the set of bit strings that consist of a 0 followed by an

even number of 1s
14. Find a phrase-structure grammar for each of these lan-

guages.
a) the set consisting of the bit strings 10, 01, and 101
b) the set of bit strings that start with 00 and end with

one or more 1s
c) the set of bit strings consisting of an even number

of 1s followed by a final 0
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TABLE 1

f
Input

State 0 1

s0 s0 s1
s1 s0 s2
s2 s0 s0
s3 s2 s1

s1

s3

s2

s0

1 1

Start 1
0

00, 1

0

FIGURE 1 The state diagram for a
finite-state automaton.

EXTENDING THE TRANSITION FUNCTION The transition function f of a finite-state ma-
chine M = (S, I, f, s0, F) can be extended so that it is defined for all pairs of states and strings;
that is, f can be extended to a function f : S × I∗ → S. Let x = x1x2 … xk be a string in I∗. Then
f (s1, x) is the state obtained by using each successive symbol of x, from left to right, as in-
put, starting with state s1. From s1 we go on to state s2 = f (s1, x1), then to state s3 = f (s2, x2),
and so on, with f (s1, x) = f (sk, xk). Formally, we can define this extended transition function f
recursively for the deterministic finite-state machine M = (S, I, f, s0, F) by

(i) f (s, !) = s for every state s ∈ S; and
(ii) f (s, xa) = f (f (s, x), a) for all s ∈ S, x ∈ I∗, and a ∈ I.

We can use structural induction and this recursive definition to prove properties of this extended
transition function. For example, in Exercise 15 we ask you to prove that

f (s, xy) = f (f (s, x), y)
for every state s ∈ S and strings x ∈ I∗ and y ∈ I∗.

13.3.4 Language Recognition by Finite-State Machines
Next, we define some terms that are used when studying the recognition by finite-state automata
of certain sets of strings.

Definition 4 A string x is said to be recognized or accepted by the machine M = (S, I, f, s0, F) if it takes
the initial state s0 to a final state, that is, f (s0, x) is a state in F. The language recognized or
accepted by the machine M, denoted by L(M), is the set of all strings that are recognized by
M. Two finite-state automata are called equivalent if they recognize the same language.

In Example 5 we will find the languages recognized by several finite-state automata.
EXAMPLE 5 Determine the languages recognized by the finite-state automata M1, M2, and M3 in Figure 2.

Solution: The only final state of M1 is s0. The strings that take s0 to itself are those consisting
of zero or more consecutive 1s. Hence, L(M1) = {1n ∣ n = 0, 1, 2,…}.

The only final state of M2 is s2. The only strings that take s0 to s2 are 1 and 01. Hence,
L(M2) = {1, 01}.

The final states of M3 are s0 and s3. The only strings that take s0 to itself are !, 0, 00, 000,… ,
that is, any string of zero or more consecutive 0s. The only strings that take s0 to s3 are
a string of zero or more consecutive 0s, followed by 10, followed by any string. Hence,
L(M3) = {0n, 0n10x ∣ n = 0, 1, 2,… , and x is any string}. ◂
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CHAPTER 13
Modeling Computation

SECTION 13.1 Languages and Grammars
2. There are of course a large number of possible answers. Five of them are the sleepy hare runs quickly , the

hare passes the tortoise, the happy hare runs slowly , the happy tortoise passes the hare, and the hare passes

the happy hare.

4. a) It su�ces to give a derivation of this string. We write the derivation in the obvious way. S ) 1S )
11S ) 111S ) 11100A ) 111000.

b) Every production results in a string that ends in S , A , or 0. Therefore this string, which ends with a 1,
cannot be generated.

c) Notice that we can have any number of 1’s at the beginning of the string (including none) by iterating the
production S ! 1S . Eventually the S must turn into 00A , so at least two 0’s must come next. We can then
have as many 0’s as we like by using the production A ! 0A repeatedly. We must end up with at least one
more 0 (and therefore a total of at least three 0’s) at the right end of the string, because the A disappears
only upon using A ! 0. So the language generated by G is the set of all strings consisting of zero or more
1’s followed by three or more 0’s . We can write this as { 0n1m | n � 0 and m � 3 } .

6. a) There is only one terminal string possible here, namely abbb . Therefore the language is {abbb} .
b) This time there are only two possible strings, so the answer is {aba, aa} .
c) Note that A must eventually turn into ab . Therefore the answer is {abb, abab} .
d) If the rule S ! AA is applied first, then the string that results must be N a’s , where N is an even
number greater than or equal to 4, since each A becomes a positive even number of a’s . If the rule S ! B is
applied first, then a string of one or more b’s results. Therefore the language is { a2n | n � 2 }[{ bn | n � 1 } .
e) The rules imply that the string will consist of some a’s , followed by some b’s , followed by some more a’s
(“some” might be none, though). Furthermore, the total number of a’s equals the total number of b’s . Thus
we can write the answer as { anbn+mam | m,n � 0 } .

8. If we apply the rule S ! 0S1 n times, followed by the rule S ! � , then the string 0n1n results. On the
other hand, no other derivations are possible, since once the rule S ! � is used, the derivation stops. This
proves the given statement.

10. a) It follows by induction that unless the derivation has stopped, the string generated by any sequence of
applications of the rules must be of the form 0nS1m for some nonnegative integers n and m . Conversely,
every string of this form can be obtained. Since the only other rule is S ! � , the only terminal strings
generated by this grammar are 0n1m .

b) A derivation consists of some applications of the rules until the S disappears, followed, perhaps, by some
more applications of the rules. First let us see what can happen up to the point at which the S disappears.
The first rule adds 0’s to the left of the S . The last rule makes the S disappear, whereas rules two and three
turn the S into 1A or 1. Therefore the possible strings generated at the point the S disappears are 0n , 0n1,
and 0n1A , where n is a nonnegative integer. By rules four and five, the A eventually turns into one or more
1’s . Therefore the possible strings are 0n1m for nonnegative integers n and m .

Solution for Section 13.1: (4)


