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Proof: We note that the theorem holds for k = 2 and k = 3 because R(2, 2) = 2 and R(3, 3) = 6,
as was shown in Section 6.2. Now suppose that k ≥ 4. We will use the probabilistic method to
show that if there are fewer than 2k∕2 people at a party, it is possible that no k of them are mutual
friends or mutual enemies. This will show that R(k, k) is at least 2k∕2.

To use the probabilistic method, we assume that it is equally likely for two people to be
friends or enemies. (Note that this assumption does not have to be realistic.) Suppose there
are n people at the party. It follows that there are (n

k

) different sets of k people at this
party, which we list as S1, S2,… , S(n

k). Let Ei be the event that all k people in Si are ei-
ther mutual friends or mutual enemies. The probability that there are either k mutual friends
or k mutual enemies among the n people equals p(⋃(n

k)
i=1 Ei).

According to our assumption it is equally likely for two people to be friends or enemies.
The probability that two people are friends equals the probability that they are enemies; both
probabilities equal 1∕2. Furthermore, there are (k

2
)
= k(k−1)∕2 pairs of people in Si because

there are k people in Si. Hence, the probability that all k people in Si are mutual friends and the
probability that all k people in Si are mutual enemies both equal (1∕2)k(k−1)∕2. It follows that
p(Ei) = 2(1∕2)k(k−1)∕2.

The probability that there are either k mutual friends or k mutual enemies in the group of n
people equals p(⋃(n

k)
i=1 Ei). Using Boole’s inequality (Exercise 15), it follows that

p
⎛
⎜
⎜⎝

(n
k)⋃

i=1
Ei

⎞
⎟
⎟⎠
≤

(n
k)∑

i=1
p(Ei) =

(
n
k

)
⋅ 2
(1

2
)k(k−1)∕2

.

By Exercise 21 in Section 6.4, we have (n
k

) ≤ nk∕2k−1. Hence,
(

n
k

)
2
(1

2
)k(k−1)∕2 ≤ nk

2k−1 2
(1

2
)k(k−1)∕2

.

Now if n < 2k∕2, we have
nk

2k−1 2
(1

2
)k(k−1)∕2

< 2k(k∕2)
2k−1 2

(1
2
)k(k−1)∕2

= 22−(k∕2) ≤ 1,

where the last step follows because k ≥ 4.
We can now conclude that p(⋃(n

k)
i=1 Ei) < 1 when k ≥ 4. Hence, the probability of the com-

plementary event, that there is no set of either k mutual friends or mutual enemies at the
party, is greater than 0. It follows that if n < 2k∕2, there is at least one set such that no subset
of k people are mutual friends or mutual enemies.

Exercises

1. What probability should be assigned to the outcome of
heads when a biased coin is tossed, if heads is three times
as likely to come up as tails? What probability should be
assigned to the outcome of tails?

2. Find the probability of each outcome when a loaded die
is rolled, if a 3 is twice as likely to appear as each of the
other five numbers on the die.

3. Find the probability of each outcome when a biased die
is rolled, if rolling a 2 or rolling a 4 is three times as likely

as rolling each of the other four numbers on the die and
it is equally likely to roll a 2 or a 4.

4. Show that conditions (i) and (ii) are met under Laplace’s
definition of probability, when outcomes are equally
likely.

5. A pair of dice is loaded. The probability that a 4 appears
on the first die is 2∕7, and the probability that a 3 appears
on the second die is 2∕7. Other outcomes for each die

7.2 Probability Theory 491

Proof: We note that the theorem holds for k = 2 and k = 3 because R(2, 2) = 2 and R(3, 3) = 6,
as was shown in Section 6.2. Now suppose that k ≥ 4. We will use the probabilistic method to
show that if there are fewer than 2k∕2 people at a party, it is possible that no k of them are mutual
friends or mutual enemies. This will show that R(k, k) is at least 2k∕2.

To use the probabilistic method, we assume that it is equally likely for two people to be
friends or enemies. (Note that this assumption does not have to be realistic.) Suppose there
are n people at the party. It follows that there are (n

k

) different sets of k people at this
party, which we list as S1, S2,… , S(n

k). Let Ei be the event that all k people in Si are ei-
ther mutual friends or mutual enemies. The probability that there are either k mutual friends
or k mutual enemies among the n people equals p(⋃(n

k)
i=1 Ei).

According to our assumption it is equally likely for two people to be friends or enemies.
The probability that two people are friends equals the probability that they are enemies; both
probabilities equal 1∕2. Furthermore, there are (k

2
)
= k(k−1)∕2 pairs of people in Si because

there are k people in Si. Hence, the probability that all k people in Si are mutual friends and the
probability that all k people in Si are mutual enemies both equal (1∕2)k(k−1)∕2. It follows that
p(Ei) = 2(1∕2)k(k−1)∕2.

The probability that there are either k mutual friends or k mutual enemies in the group of n
people equals p(⋃(n

k)
i=1 Ei). Using Boole’s inequality (Exercise 15), it follows that

p
⎛
⎜
⎜⎝

(n
k)⋃

i=1
Ei

⎞
⎟
⎟⎠
≤

(n
k)∑

i=1
p(Ei) =

(
n
k

)
⋅ 2
(1

2
)k(k−1)∕2

.

By Exercise 21 in Section 6.4, we have (n
k

) ≤ nk∕2k−1. Hence,
(

n
k

)
2
(1

2
)k(k−1)∕2 ≤ nk

2k−1 2
(1

2
)k(k−1)∕2

.

Now if n < 2k∕2, we have
nk

2k−1 2
(1

2
)k(k−1)∕2

< 2k(k∕2)
2k−1 2

(1
2
)k(k−1)∕2

= 22−(k∕2) ≤ 1,

where the last step follows because k ≥ 4.
We can now conclude that p(⋃(n

k)
i=1 Ei) < 1 when k ≥ 4. Hence, the probability of the com-

plementary event, that there is no set of either k mutual friends or mutual enemies at the
party, is greater than 0. It follows that if n < 2k∕2, there is at least one set such that no subset
of k people are mutual friends or mutual enemies.

Exercises

1. What probability should be assigned to the outcome of
heads when a biased coin is tossed, if heads is three times
as likely to come up as tails? What probability should be
assigned to the outcome of tails?

2. Find the probability of each outcome when a loaded die
is rolled, if a 3 is twice as likely to appear as each of the
other five numbers on the die.

3. Find the probability of each outcome when a biased die
is rolled, if rolling a 2 or rolling a 4 is three times as likely

as rolling each of the other four numbers on the die and
it is equally likely to roll a 2 or a 4.

4. Show that conditions (i) and (ii) are met under Laplace’s
definition of probability, when outcomes are equally
likely.

5. A pair of dice is loaded. The probability that a 4 appears
on the first die is 2∕7, and the probability that a 3 appears
on the second die is 2∕7. Other outcomes for each die

7.2 Probability Theory 491

Proof: We note that the theorem holds for k = 2 and k = 3 because R(2, 2) = 2 and R(3, 3) = 6,
as was shown in Section 6.2. Now suppose that k ≥ 4. We will use the probabilistic method to
show that if there are fewer than 2k∕2 people at a party, it is possible that no k of them are mutual
friends or mutual enemies. This will show that R(k, k) is at least 2k∕2.

To use the probabilistic method, we assume that it is equally likely for two people to be
friends or enemies. (Note that this assumption does not have to be realistic.) Suppose there
are n people at the party. It follows that there are (n

k

) different sets of k people at this
party, which we list as S1, S2,… , S(n

k). Let Ei be the event that all k people in Si are ei-
ther mutual friends or mutual enemies. The probability that there are either k mutual friends
or k mutual enemies among the n people equals p(⋃(n

k)
i=1 Ei).

According to our assumption it is equally likely for two people to be friends or enemies.
The probability that two people are friends equals the probability that they are enemies; both
probabilities equal 1∕2. Furthermore, there are (k

2
)
= k(k−1)∕2 pairs of people in Si because

there are k people in Si. Hence, the probability that all k people in Si are mutual friends and the
probability that all k people in Si are mutual enemies both equal (1∕2)k(k−1)∕2. It follows that
p(Ei) = 2(1∕2)k(k−1)∕2.

The probability that there are either k mutual friends or k mutual enemies in the group of n
people equals p(⋃(n

k)
i=1 Ei). Using Boole’s inequality (Exercise 15), it follows that

p
⎛
⎜
⎜⎝

(n
k)⋃

i=1
Ei

⎞
⎟
⎟⎠
≤

(n
k)∑

i=1
p(Ei) =

(
n
k

)
⋅ 2
(1

2
)k(k−1)∕2

.

By Exercise 21 in Section 6.4, we have (n
k

) ≤ nk∕2k−1. Hence,
(

n
k

)
2
(1

2
)k(k−1)∕2 ≤ nk

2k−1 2
(1

2
)k(k−1)∕2

.

Now if n < 2k∕2, we have
nk

2k−1 2
(1

2
)k(k−1)∕2

< 2k(k∕2)
2k−1 2

(1
2
)k(k−1)∕2

= 22−(k∕2) ≤ 1,

where the last step follows because k ≥ 4.
We can now conclude that p(⋃(n

k)
i=1 Ei) < 1 when k ≥ 4. Hence, the probability of the com-

plementary event, that there is no set of either k mutual friends or mutual enemies at the
party, is greater than 0. It follows that if n < 2k∕2, there is at least one set such that no subset
of k people are mutual friends or mutual enemies.

Exercises

1. What probability should be assigned to the outcome of
heads when a biased coin is tossed, if heads is three times
as likely to come up as tails? What probability should be
assigned to the outcome of tails?

2. Find the probability of each outcome when a loaded die
is rolled, if a 3 is twice as likely to appear as each of the
other five numbers on the die.

3. Find the probability of each outcome when a biased die
is rolled, if rolling a 2 or rolling a 4 is three times as likely

as rolling each of the other four numbers on the die and
it is equally likely to roll a 2 or a 4.

4. Show that conditions (i) and (ii) are met under Laplace’s
definition of probability, when outcomes are equally
likely.

5. A pair of dice is loaded. The probability that a 4 appears
on the first die is 2∕7, and the probability that a 3 appears
on the second die is 2∕7. Other outcomes for each die

492 7 / Discrete Probability

appear with probability 1∕7. What is the probability of 7
appearing as the sum of the numbers when the two dice
are rolled?

6. What is the probability of these events when we randomly
select a permutation of {1, 2, 3}?
a) 1 precedes 3.
b) 3 precedes 1.
c) 3 precedes 1 and 3 precedes 2.

7. What is the probability of these events when we randomly
select a permutation of {1, 2, 3, 4}?
a) 1 precedes 4.
b) 4 precedes 1.
c) 4 precedes 1 and 4 precedes 2.
d) 4 precedes 1, 4 precedes 2, and 4 precedes 3.
e) 4 precedes 3 and 2 precedes 1.

8. What is the probability of these events when we randomly
select a permutation of {1, 2,… , n} where n ≥ 4?
a) 1 precedes 2.
b) 2 precedes 1.
c) 1 immediately precedes 2.
d) n precedes 1 and n −1 precedes 2.
e) n precedes 1 and n precedes 2.

9. What is the probability of these events when we randomly
select a permutation of the 26 lowercase letters of the En-
glish alphabet?
a) The permutation consists of the letters in reverse al-

phabetic order.
b) z is the first letter of the permutation.
c) z precedes a in the permutation.
d) a immediately precedes z in the permutation.
e) a immediately precedes m, which immediately pre-

cedes z in the permutation.
f ) m, n, and o are in their original places in the permu-

tation.
10. What is the probability of these events when we randomly

select a permutation of the 26 lowercase letters of the En-
glish alphabet?
a) The first 13 letters of the permutation are in alphabet-

ical order.
b) a is the first letter of the permutation and z is the last

letter.
c) a and z are next to each other in the permutation.
d) a and b are not next to each other in the permutation.
e) a and z are separated by at least 23 letters in the per-

mutation.
f ) z precedes both a and b in the permutation.

11. Suppose that E and F are events such that p(E) =
0.7 and p(F) = 0.5. Show that p(E ∪ F) ≥ 0.7 and
p(E ∩ F) ≥ 0.2.

12. Suppose that E and F are events such that p(E) =
0.8 and p(F) = 0.6. Show that p(E ∪ F) ≥ 0.8 and
p(E ∩ F) ≥ 0.4.

13. Show that if E and F are events, then p(E ∩ F) ≥ p(E) +
p(F) − 1. This is known as Bonferroni’s inequality.

14. Use mathematical induction to prove the following gen-
eralization of Bonferroni’s inequality:

p(E1 ∩ E2 ∩⋯ ∩ En)
≥ p(E1) + p(E2) +⋯ + p(En) − (n − 1),

where E1, E2,… , En are n events.
15. Show that if E1, E2,… , En are events from a finite sample

space, then
p(E1 ∪ E2 ∪⋯ ∪ En)

≤ p(E1) + p(E2) +⋯ + p(En).
This is known as Boole’s inequality.

16. Show that if E and F are independent events, then E
and F are also independent events.

17. If E and F are independent events, prove or disprove
that E and F are necessarily independent events.

In Exercises 18, 20, and 21 assume that the year has 366 days
and all birthdays are equally likely. In Exercise 19 assume it
is equally likely that a person is born in any given month of
the year.
18. a) What is the probability that two people chosen at ran-

dom were born on the same day of the week?
b) What is the probability that in a group of n people

chosen at random, there are at least two born on the
same day of the week?

c) How many people chosen at random are needed to
make the probability greater than 1∕2 that there are at
least two people born on the same day of the week?

19. a) What is the probability that two people chosen at ran-
dom were born during the same month of the year?

b) What is the probability that in a group of n people
chosen at random, there are at least two born in the
same month of the year?

c) How many people chosen at random are needed to
make the probability greater than 1∕2 that there are at
least two people born in the same month of the year?

20. Find the smallest number of people you need to choose
at random so that the probability that at least one of them
has a birthday today exceeds 1∕2.

21. Find the smallest number of people you need to choose
at random so that the probability that at least two of them
were both born on April 1 exceeds 1∕2.

∗22. February 29 occurs only in leap years. Years divisible
by 4, but not by 100, are always leap years. Years divis-
ible by 100, but not by 400, are not leap years, but years
divisible by 400 are leap years.
a) What probability distribution for birthdays should be

used to reflect how often February 29 occurs?
b) Using the probability distribution from part (a), what

is the probability that in a group of n people at least
two have the same birthday?

23. What is the conditional probability that exactly four
heads appear when a fair coin is flipped five times, given
that the first flip came up heads?

24. What is the conditional probability that exactly four
heads appear when a fair coin is flipped five times, given
that the first flip came up tails?
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25. What is the conditional probability that a randomly gen-
erated bit string of length four contains at least two con-
secutive 0s, given that the first bit is a 1? (Assume the
probabilities of a 0 and a 1 are the same.)

26. Let E be the event that a randomly generated bit string
of length three contains an odd number of 1s, and let F
be the event that the string starts with 1. Are E and F
independent?

27. Let E and F be the events that a family of n children has
children of both sexes and has at most one boy, respec-
tively. Are E and F independent if
a) n = 2? b) n = 4? c) n = 5?

28. Assume that the probability a child is a boy is 0.51
and that the sexes of children born into a family are
independent. What is the probability that a family of five
children has
a) exactly three boys?
b) at least one boy?
c) at least one girl?
d) all children of the same sex?

29. A group of six people play the game of “odd person out”
to determine who will buy refreshments. Each person
flips a fair coin. If there is a person whose outcome is
not the same as that of any other member of the group,
this person has to buy the refreshments. What is the prob-
ability that there is an odd person out after the coins are
flipped once?

30. Find the probability that a randomly generated bit string
of length 10 does not contain a 0 if bits are independent
and if
a) a 0 bit and a 1 bit are equally likely.
b) the probability that a bit is a 1 is 0.6.
c) the probability that the ith bit is a 1 is 1∕2i for i =

1, 2, 3,… , 10.
31. Find the probability that a family with five children does

not have a boy, if the sexes of children are independent
and if
a) a boy and a girl are equally likely.
b) the probability of a boy is 0.51.
c) the probability that the ith child is a boy is

0.51 − (i∕100).
32. Find the probability that a randomly generated bit string

of length 10 begins with a 1 or ends with a 00 for the
same conditions as in parts (a), (b), and (c) of Exercise
30, if bits are generated independently.

33. Find the probability that the first child of a family with
five children is a boy or that the last two children of the
family are girls, for the same conditions as in parts (a),
(b), and (c) of Exercise 31.

34. Find each of the following probabilities when n indepen-
dent Bernoulli trials are carried out with probability of
success p.
a) the probability of no successes
b) the probability of at least one success
c) the probability of at most one success
d) the probability of at least two successes

35. Find each of the following probabilities when n indepen-
dent Bernoulli trials are carried out with probability of
success p.
a) the probability of no failures
b) the probability of at least one failure
c) the probability of at most one failure
d) the probability of at least two failures

36. Use mathematical induction to prove that if E1, E2,… , Enis a sequence of n pairwise disjoint events in a sample
space S, where n is a positive integer, then p(⋃n

i=1 Ei) =∑n
i=1 p(Ei).

∗37. (Requires calculus) Show that if E1, E2,… is an infinite
sequence of pairwise disjoint events in a sample space
S, then p(⋃∞

i=1 Ei) = ∑∞
i=1 p(Ei). [Hint: Use Exercise 36

and take limits.]
38. A pair of dice is rolled in a remote location and when you

ask an honest observer whether at least one die came up
six, this honest observer answers in the affirmative.
a) What is the probability that the sum of the numbers

that came up on the two dice is seven, given the infor-
mation provided by the honest observer?

b) Suppose that the honest observer tells us that at least
one die came up five. What is the probability the sum
of the numbers that came up on the dice is seven,
given this information?

∗∗39. This exercise employs the probabilistic method to prove a
result about round-robin tournaments. In a round-robin
tournament with m players, every two players play one
game in which one player wins and the other loses.

We want to find conditions on positive integers m
and k with k < m such that it is possible for the outcomes
of the tournament to have the property that for every set
of k players, there is a player who beats every member
in this set. So that we can use probabilistic reasoning to
draw conclusions about round-robin tournaments, we as-
sume that when two players compete it is equally likely
that either player wins the game and we assume that the
outcomes of different games are independent. Let E be
the event that for every set S with k players, where k is
a positive integer less than m, there is a player who has
beaten all k players in S.
a) Show that p(E) ≤ ∑(m

k)
j=1 p(Fj), where Fj is the event

that there is no player who beats all k players from
the jth set in a list of the (m

k

) sets of k players.
b) Show that the probability of Fj is (1−2−k)m−k.
c) Conclude from parts (a) and (b) that p(E) ≤(m

k

)(1 − 2−k)m−k and, therefore, that there must
be a tournament with the described property if(m

k

)(1−2−k)m−k < 1.
d) Use part (c) to find values of m such that there is a

tournament with m players such that for every set S
of two players, there is a player who has beaten both
players in S. Repeat for sets of three players.
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probability that all k people in Si are mutual enemies both equal (1∕2)k(k−1)∕2. It follows that
p(Ei) = 2(1∕2)k(k−1)∕2.

The probability that there are either k mutual friends or k mutual enemies in the group of n
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where the last step follows because k ≥ 4.
We can now conclude that p(⋃(n

k)
i=1 Ei) < 1 when k ≥ 4. Hence, the probability of the com-

plementary event, that there is no set of either k mutual friends or mutual enemies at the
party, is greater than 0. It follows that if n < 2k∕2, there is at least one set such that no subset
of k people are mutual friends or mutual enemies.

Exercises

1. What probability should be assigned to the outcome of
heads when a biased coin is tossed, if heads is three times
as likely to come up as tails? What probability should be
assigned to the outcome of tails?

2. Find the probability of each outcome when a loaded die
is rolled, if a 3 is twice as likely to appear as each of the
other five numbers on the die.

3. Find the probability of each outcome when a biased die
is rolled, if rolling a 2 or rolling a 4 is three times as likely

as rolling each of the other four numbers on the die and
it is equally likely to roll a 2 or a 4.

4. Show that conditions (i) and (ii) are met under Laplace’s
definition of probability, when outcomes are equally
likely.

5. A pair of dice is loaded. The probability that a 4 appears
on the first die is 2∕7, and the probability that a 3 appears
on the second die is 2∕7. Other outcomes for each die
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appear with probability 1∕7. What is the probability of 7
appearing as the sum of the numbers when the two dice
are rolled?

6. What is the probability of these events when we randomly
select a permutation of {1, 2, 3}?
a) 1 precedes 3.
b) 3 precedes 1.
c) 3 precedes 1 and 3 precedes 2.

7. What is the probability of these events when we randomly
select a permutation of {1, 2, 3, 4}?
a) 1 precedes 4.
b) 4 precedes 1.
c) 4 precedes 1 and 4 precedes 2.
d) 4 precedes 1, 4 precedes 2, and 4 precedes 3.
e) 4 precedes 3 and 2 precedes 1.

8. What is the probability of these events when we randomly
select a permutation of {1, 2,… , n} where n ≥ 4?
a) 1 precedes 2.
b) 2 precedes 1.
c) 1 immediately precedes 2.
d) n precedes 1 and n −1 precedes 2.
e) n precedes 1 and n precedes 2.

9. What is the probability of these events when we randomly
select a permutation of the 26 lowercase letters of the En-
glish alphabet?
a) The permutation consists of the letters in reverse al-

phabetic order.
b) z is the first letter of the permutation.
c) z precedes a in the permutation.
d) a immediately precedes z in the permutation.
e) a immediately precedes m, which immediately pre-

cedes z in the permutation.
f ) m, n, and o are in their original places in the permu-

tation.
10. What is the probability of these events when we randomly

select a permutation of the 26 lowercase letters of the En-
glish alphabet?
a) The first 13 letters of the permutation are in alphabet-

ical order.
b) a is the first letter of the permutation and z is the last

letter.
c) a and z are next to each other in the permutation.
d) a and b are not next to each other in the permutation.
e) a and z are separated by at least 23 letters in the per-

mutation.
f ) z precedes both a and b in the permutation.

11. Suppose that E and F are events such that p(E) =
0.7 and p(F) = 0.5. Show that p(E ∪ F) ≥ 0.7 and
p(E ∩ F) ≥ 0.2.

12. Suppose that E and F are events such that p(E) =
0.8 and p(F) = 0.6. Show that p(E ∪ F) ≥ 0.8 and
p(E ∩ F) ≥ 0.4.

13. Show that if E and F are events, then p(E ∩ F) ≥ p(E) +
p(F) − 1. This is known as Bonferroni’s inequality.

14. Use mathematical induction to prove the following gen-
eralization of Bonferroni’s inequality:

p(E1 ∩ E2 ∩⋯ ∩ En)
≥ p(E1) + p(E2) +⋯ + p(En) − (n − 1),

where E1, E2,… , En are n events.
15. Show that if E1, E2,… , En are events from a finite sample

space, then
p(E1 ∪ E2 ∪⋯ ∪ En)

≤ p(E1) + p(E2) +⋯ + p(En).
This is known as Boole’s inequality.

16. Show that if E and F are independent events, then E
and F are also independent events.

17. If E and F are independent events, prove or disprove
that E and F are necessarily independent events.

In Exercises 18, 20, and 21 assume that the year has 366 days
and all birthdays are equally likely. In Exercise 19 assume it
is equally likely that a person is born in any given month of
the year.
18. a) What is the probability that two people chosen at ran-

dom were born on the same day of the week?
b) What is the probability that in a group of n people

chosen at random, there are at least two born on the
same day of the week?

c) How many people chosen at random are needed to
make the probability greater than 1∕2 that there are at
least two people born on the same day of the week?

19. a) What is the probability that two people chosen at ran-
dom were born during the same month of the year?

b) What is the probability that in a group of n people
chosen at random, there are at least two born in the
same month of the year?

c) How many people chosen at random are needed to
make the probability greater than 1∕2 that there are at
least two people born in the same month of the year?

20. Find the smallest number of people you need to choose
at random so that the probability that at least one of them
has a birthday today exceeds 1∕2.

21. Find the smallest number of people you need to choose
at random so that the probability that at least two of them
were both born on April 1 exceeds 1∕2.

∗22. February 29 occurs only in leap years. Years divisible
by 4, but not by 100, are always leap years. Years divis-
ible by 100, but not by 400, are not leap years, but years
divisible by 400 are leap years.
a) What probability distribution for birthdays should be

used to reflect how often February 29 occurs?
b) Using the probability distribution from part (a), what

is the probability that in a group of n people at least
two have the same birthday?

23. What is the conditional probability that exactly four
heads appear when a fair coin is flipped five times, given
that the first flip came up heads?

24. What is the conditional probability that exactly four
heads appear when a fair coin is flipped five times, given
that the first flip came up tails?
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Exercises from Section 7.3: (5), (7)

Exercises from Section 10.5: (1), (3), (5), (31), (33), (35), (47)
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message to determine where words appear in it. Also, spam filters look at appearances of cer-
tain types of strings of characters rather than just words. For example, a message with the valid
e-mail address of one of your friends is less likely to be spam (if not sent by a worm) than one
containing an e-mail address that came from a country known to originate a lot of spam. There
is an ongoing war between people who create spam and those trying to filter their messages out.
This leads to the introduction of many new techniques to defeat spam filters, including inserting
into spam messages long strings of words that appear in messages that are not spam, as well as
including words inside pictures. The techniques we have discussed here are only the first steps
in fighting this war on spam.

Exercises

1. Suppose that E and F are events in a sample space
and p(E) = 1∕3, p(F) = 1∕2, and p(E ∣ F) = 2∕5. Find
p(F ∣ E).

2. Suppose that E and F are events in a sample space and
p(E) = 2∕3, p(F) = 3∕4, and p(F ∣ E) = 5∕8. Find p(E ∣
F).

3. Suppose that Frida selects a ball by first picking one of
two boxes at random and then selecting a ball from this
box at random. The first box contains two white balls and
three blue balls, and the second box contains four white
balls and one blue ball. What is the probability that Frida
picked a ball from the first box if she has selected a blue
ball?

4. Suppose that Ann selects a ball by first picking one of two
boxes at random and then selecting a ball from this box.
The first box contains three orange balls and four black
balls, and the second box contains five orange balls and
six black balls. What is the probability that Ann picked
a ball from the second box if she has selected an orange
ball?

5. Suppose that 8% of all bicycle racers use steroids, that
a bicyclist who uses steroids tests positive for steroids
96% of the time, and that a bicyclist who does not use
steroids tests positive for steroids 9% of the time. What
is the probability that a randomly selected bicyclist who
tests positive for steroids actually uses steroids?

6. When a test for steroids is given to soccer players, 98%
of the players taking steroids test positive and 12% of the
players not taking steroids test positive. Suppose that 5%
of soccer players take steroids. What is the probability
that a soccer player who tests positive takes steroids?

7. Suppose that a test for opium use has a 2% false positive
rate and a 5% false negative rate. That is, 2% of people
who do not use opium test positive for opium, and 5% of
opium users test negative for opium. Furthermore, sup-
pose that 1% of people actually use opium.
a) Find the probability that someone who tests negative

for opium use does not use opium.
b) Find the probability that someone who tests positive

for opium use actually uses opium.
8. Suppose that one person in 10,000 people has a rare ge-

netic disease. There is an excellent test for the disease;
99.9% of people with the disease test positive and only
0.02% who do not have the disease test positive.

a) What is the probability that someone who tests posi-
tive has the genetic disease?

b) What is the probability that someone who tests nega-
tive does not have the disease?

9. Suppose that 8% of the patients tested in a clinic are in-
fected with HIV. Furthermore, suppose that when a blood
test for HIV is given, 98% of the patients infected with
HIV test positive and that 3% of the patients not infected
with HIV test positive. What is the probability that
a) a patient testing positive for HIV with this test is in-

fected with it?
b) a patient testing positive for HIV with this test is not

infected with it?
c) a patient testing negative for HIV with this test is in-

fected with it?
d) a patient testing negative for HIV with this test is not

infected with it?
10. Suppose that 4% of the patients tested in a clinic are in-

fected with avian influenza. Furthermore, suppose that
when a blood test for avian influenza is given, 97% of
the patients infected with avian influenza test positive and
that 2% of the patients not infected with avian influenza
test positive. What is the probability that
a) a patient testing positive for avian influenza with this

test is infected with it?
b) a patient testing positive for avian influenza with this

test is not infected with it?
c) a patient testing negative for avian influenza with this

test is infected with it?
d) a patient testing negative for avian influenza with this

test is not infected with it?
11. An electronics company is planning to introduce a new

camera phone. The company commissions a marketing
report for each new product that predicts either the suc-
cess or the failure of the product. Of new products in-
troduced by the company, 60% have been successes.
Furthermore, 70% of their successful products were pre-
dicted to be successes, while 40% of failed products were
predicted to be successes. Find the probability that this
new camera phone will be successful if its success has
been predicted.
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message to determine where words appear in it. Also, spam filters look at appearances of cer-
tain types of strings of characters rather than just words. For example, a message with the valid
e-mail address of one of your friends is less likely to be spam (if not sent by a worm) than one
containing an e-mail address that came from a country known to originate a lot of spam. There
is an ongoing war between people who create spam and those trying to filter their messages out.
This leads to the introduction of many new techniques to defeat spam filters, including inserting
into spam messages long strings of words that appear in messages that are not spam, as well as
including words inside pictures. The techniques we have discussed here are only the first steps
in fighting this war on spam.

Exercises

1. Suppose that E and F are events in a sample space
and p(E) = 1∕3, p(F) = 1∕2, and p(E ∣ F) = 2∕5. Find
p(F ∣ E).

2. Suppose that E and F are events in a sample space and
p(E) = 2∕3, p(F) = 3∕4, and p(F ∣ E) = 5∕8. Find p(E ∣
F).

3. Suppose that Frida selects a ball by first picking one of
two boxes at random and then selecting a ball from this
box at random. The first box contains two white balls and
three blue balls, and the second box contains four white
balls and one blue ball. What is the probability that Frida
picked a ball from the first box if she has selected a blue
ball?

4. Suppose that Ann selects a ball by first picking one of two
boxes at random and then selecting a ball from this box.
The first box contains three orange balls and four black
balls, and the second box contains five orange balls and
six black balls. What is the probability that Ann picked
a ball from the second box if she has selected an orange
ball?

5. Suppose that 8% of all bicycle racers use steroids, that
a bicyclist who uses steroids tests positive for steroids
96% of the time, and that a bicyclist who does not use
steroids tests positive for steroids 9% of the time. What
is the probability that a randomly selected bicyclist who
tests positive for steroids actually uses steroids?

6. When a test for steroids is given to soccer players, 98%
of the players taking steroids test positive and 12% of the
players not taking steroids test positive. Suppose that 5%
of soccer players take steroids. What is the probability
that a soccer player who tests positive takes steroids?

7. Suppose that a test for opium use has a 2% false positive
rate and a 5% false negative rate. That is, 2% of people
who do not use opium test positive for opium, and 5% of
opium users test negative for opium. Furthermore, sup-
pose that 1% of people actually use opium.
a) Find the probability that someone who tests negative

for opium use does not use opium.
b) Find the probability that someone who tests positive

for opium use actually uses opium.
8. Suppose that one person in 10,000 people has a rare ge-

netic disease. There is an excellent test for the disease;
99.9% of people with the disease test positive and only
0.02% who do not have the disease test positive.

a) What is the probability that someone who tests posi-
tive has the genetic disease?

b) What is the probability that someone who tests nega-
tive does not have the disease?

9. Suppose that 8% of the patients tested in a clinic are in-
fected with HIV. Furthermore, suppose that when a blood
test for HIV is given, 98% of the patients infected with
HIV test positive and that 3% of the patients not infected
with HIV test positive. What is the probability that
a) a patient testing positive for HIV with this test is in-

fected with it?
b) a patient testing positive for HIV with this test is not

infected with it?
c) a patient testing negative for HIV with this test is in-

fected with it?
d) a patient testing negative for HIV with this test is not

infected with it?
10. Suppose that 4% of the patients tested in a clinic are in-

fected with avian influenza. Furthermore, suppose that
when a blood test for avian influenza is given, 97% of
the patients infected with avian influenza test positive and
that 2% of the patients not infected with avian influenza
test positive. What is the probability that
a) a patient testing positive for avian influenza with this

test is infected with it?
b) a patient testing positive for avian influenza with this

test is not infected with it?
c) a patient testing negative for avian influenza with this

test is infected with it?
d) a patient testing negative for avian influenza with this

test is not infected with it?
11. An electronics company is planning to introduce a new

camera phone. The company commissions a marketing
report for each new product that predicts either the suc-
cess or the failure of the product. Of new products in-
troduced by the company, 60% have been successes.
Furthermore, 70% of their successful products were pre-
dicted to be successes, while 40% of failed products were
predicted to be successes. Find the probability that this
new camera phone will be successful if its success has
been predicted.
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Gray codes are named after Frank Gray, who invented them in the 1940s at AT&T Bell
Laboratories to minimize the effect of errors in transmitting digital signals. ◂

Exercises

In Exercises 1–8 determine whether the given graph has an
Euler circuit. Construct such a circuit when one exists. If
no Euler circuit exists, determine whether the graph has an
Euler path and construct such a path if one exists.
1. b c

e

da

2. b ca

d e f

h ig

3. ba

dc

e

4.

b

ce

d

f

a

5. a b

de

c

6.
b c

h g

a i d e

f

7.
cba d

ghi fe

8. cba d

hgf i

e

j

mlk n o

9. Suppose that in addition to the seven bridges of
Königsberg (shown in Figure 1) there were two addi-
tional bridges, connecting regions B and C and regions
B and D, respectively. Could someone cross all nine
of these bridges exactly once and return to the starting
point?

10. Can someone cross all the bridges shown in this map ex-
actly once and return to the starting point?

11. When can the centerlines of the streets in a city be painted
without traveling a street more than once? (Assume that
all the streets are two-way streets.)

12. Devise a procedure, similar to Algorithm 1, for construct-
ing Euler paths in multigraphs.

In Exercises 13–15 determine whether the picture shown can
be drawn with a pencil in a continuous motion without lifting
the pencil or retracing part of the picture.
13. 14.
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15.

∗16. Show that a directed multigraph having no isolated ver-
tices has an Euler circuit if and only if the graph is weakly
connected and the in-degree and out-degree of each ver-
tex are equal.

∗17. Show that a directed multigraph having no isolated ver-
tices has an Euler path but not an Euler circuit if and
only if the graph is weakly connected and the in-degree
and out-degree of each vertex are equal for all but two
vertices, one that has in-degree one larger than its out-
degree and the other that has out-degree one larger than
its in-degree.

In Exercises 18–23 determine whether the directed graph
shown has an Euler circuit. Construct an Euler circuit if one
exists. If no Euler circuit exists, determine whether the di-
rected graph has an Euler path. Construct an Euler path if one
exists.
18. a b

c d

19. a b

d c

20. a b

d e

c

21. a b

d e

c

22. a b c

ef d

23.

d fe

ba

g ih

j lk

c

∗24. Devise an algorithm for constructing Euler circuits in di-
rected graphs.

25. Devise an algorithm for constructing Euler paths in di-
rected graphs.

26. For which values of n do these graphs have an Euler cir-
cuit?
a) Kn b) Cn c) Wn d) Qn

27. For which values of n do the graphs in Exercise 26 have
an Euler path but no Euler circuit?

28. For which values of m and n does the complete bipartite
graph Km,n have an
a) Euler circuit?
b) Euler path?

29. Find the least number of times it is necessary to lift a
pencil from the paper when drawing each of the graphs
in Exercises 1–7 without retracing any part of the graph.

In Exercises 30–36 determine whether the given graph has a
Hamilton circuit. If it does, find such a circuit. If it does not,
give an argument to show why no such circuit exists.

30. a

c

b

f

d

e

31. a b

e d

c

32. a b

d e

c

f

33. a b g

e c d f
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34. a b c

e f g

d h

n l

i k

o q

j

p

m

35. a b

ec

d

36. a b c

f

ihg

d
e

37. Does the graph in Exercise 30 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

38. Does the graph in Exercise 31 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

39. Does the graph in Exercise 32 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

40. Does the graph in Exercise 33 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

∗41. Does the graph in Exercise 34 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

42. Does the graph in Exercise 35 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

43. Does the graph in Exercise 36 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

44. For which values of n do the graphs in Exercise 26 have
a Hamilton circuit?

45. For which values of m and n does the complete bipartite
graph Km,n have a Hamilton circuit?

∗46. Show that the Petersen graph, shown here, does not have
a Hamilton circuit, but that the subgraph obtained by
deleting a vertex v, and all edges incident with v, does
have a Hamilton circuit.

a

be

d c

j

i h

g

f

47. For each of these graphs, determine (i ) whether Dirac’s
theorem can be used to show that the graph has a Hamil-
ton circuit, (ii) whether Ore’s theorem can be used to
show that the graph has a Hamilton circuit, and (iii )
whether the graph has a Hamilton circuit.
a) b)

c) d)

48. Can you find a simple graph with n vertices with n ≥ 3
that does not have a Hamilton circuit, yet the degree of
every vertex in the graph is at least (n − 1)∕2?

∗49. Show that there is a Gray code of order n whenever n
is a positive integer, or equivalently, show that the n-
cube Qn, n > 1, always has a Hamilton circuit. [Hint: Use
mathematical induction. Show how to produce a Gray
code of order n from one of order n − 1.]

Fleury’s algorithm, published in 1883, constructs Euler cir-
cuits by first choosing an arbitrary vertex of a connected
multigraph, and then forming a circuit by choosing edges suc-
cessively. Once an edge is chosen, it is removed. Edges are
chosen successively so that each edge begins where the last
edge ends, and so that this edge is not a cut edge unless there
is no alternative.
50. Use Fleury’s algorithm to find an Euler circuit in the

graph G in Figure 5.
∗51. Express Fleury’s algorithm in pseudocode.

∗∗52. Prove that Fleury’s algorithm always produces an Euler
circuit.

∗53. Give a variant of Fleury’s algorithm to produce Euler
paths.

54. A diagnostic message can be sent out over a computer
network to perform tests over all links and in all devices.
What sort of paths should be used to test all links? To test
all devices?

55. Show that a bipartite graph with an odd number of ver-
tices does not have a Hamilton circuit.
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37. Does the graph in Exercise 30 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

38. Does the graph in Exercise 31 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

39. Does the graph in Exercise 32 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

40. Does the graph in Exercise 33 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

∗41. Does the graph in Exercise 34 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

42. Does the graph in Exercise 35 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

43. Does the graph in Exercise 36 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

44. For which values of n do the graphs in Exercise 26 have
a Hamilton circuit?

45. For which values of m and n does the complete bipartite
graph Km,n have a Hamilton circuit?

∗46. Show that the Petersen graph, shown here, does not have
a Hamilton circuit, but that the subgraph obtained by
deleting a vertex v, and all edges incident with v, does
have a Hamilton circuit.
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47. For each of these graphs, determine (i ) whether Dirac’s
theorem can be used to show that the graph has a Hamil-
ton circuit, (ii) whether Ore’s theorem can be used to
show that the graph has a Hamilton circuit, and (iii )
whether the graph has a Hamilton circuit.
a) b)

c) d)

48. Can you find a simple graph with n vertices with n ≥ 3
that does not have a Hamilton circuit, yet the degree of
every vertex in the graph is at least (n − 1)∕2?

∗49. Show that there is a Gray code of order n whenever n
is a positive integer, or equivalently, show that the n-
cube Qn, n > 1, always has a Hamilton circuit. [Hint: Use
mathematical induction. Show how to produce a Gray
code of order n from one of order n − 1.]

Fleury’s algorithm, published in 1883, constructs Euler cir-
cuits by first choosing an arbitrary vertex of a connected
multigraph, and then forming a circuit by choosing edges suc-
cessively. Once an edge is chosen, it is removed. Edges are
chosen successively so that each edge begins where the last
edge ends, and so that this edge is not a cut edge unless there
is no alternative.
50. Use Fleury’s algorithm to find an Euler circuit in the

graph G in Figure 5.
∗51. Express Fleury’s algorithm in pseudocode.

∗∗52. Prove that Fleury’s algorithm always produces an Euler
circuit.

∗53. Give a variant of Fleury’s algorithm to produce Euler
paths.

54. A diagnostic message can be sent out over a computer
network to perform tests over all links and in all devices.
What sort of paths should be used to test all links? To test
all devices?

55. Show that a bipartite graph with an odd number of ver-
tices does not have a Hamilton circuit.



Exercises from Section 10.6: (3), (17), (25)
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close to an exact solution. (Also, see the preamble to Exercise 46 in the Supplmentary Exercises
of Chapter 3.) That is, they may produce a Hamilton circuit with total weight W ′ such that
W ≤ W ′ ≤ cW, where W is the total length of an exact solution and c is a constant. For example,
there is an algorithm with polynomial worst-case time complexity that works if the weighted
graph satisfies the triangle inequality such that c = 3∕2. For general weighted graphs for every
positive real number k no algorithm is known that will always produce a solution at most k times
a best solution. If such an algorithm existed, this would show that the class P would be the same
as the class NP, perhaps the most famous open question about the complexity of algorithms (see
Section 3.3).

In practice, algorithms have been developed that can solve traveling salesperson problems
with as many as 1000 vertices within 2% of an exact solution using only a few minutes of com-
puter time. For more information about the traveling salesperson problem, including history,
applications, and algorithms, see the chapter on this topic in Applications of Discrete Mathe-
matics [MiRo91] also available on the website for this book.

Exercises

1. For each of these problems about a subway system, de-
scribe a weighted graph model that can be used to solve
the problem.
a) What is the least amount of time required to travel

between two stops?
b) What is the minimum distance that can be traveled to

reach a stop from another stop?
c) What is the least fare required to travel between two

stops if fares between stops are added to give the total
fare?

In Exercises 2–4 find the length of a shortest path between a
and z in the given weighted graph.

2. b d

c e

za

5

5

43

22

2 1

3. b f

c g

za

5

6
43

74

2 1 2

5

5

d

e

3

4.
b

h

d
k

z
a

1

4
41

22
4

3

2

3

2

e

g

2
23

c f

5
6

2
1
2

12

2 2

8

5
8

3

2
6

4
6

33

3 6
3 54

8 o

r

1

1
3 i

j

m

n
q

l
p s

t

5. Find a shortest path between a and z in each of the
weighted graphs in Exercises 2–4.

6. Find the length of a shortest path between these pairs of
vertices in the weighted graph in Exercise 3.
a) a and d
b) a and f
c) c and f
d) b and z

7. Find shortest paths in the weighted graph in Exercise 3
between the pairs of vertices in Exercise 6.

8. Find a shortest path (in mileage) between each of the
following pairs of cities in the airline system shown in
Figure 1.
a) New York and Los Angeles
b) Boston and San Francisco
c) Miami and Denver
d) Miami and Los Angeles

9. Find a combination of flights with the least total air time
between the pairs of cities in Exercise 8, using the flight
times shown in Figure 1.

10. Find a least expensive combination of flights connecting
the pairs of cities in Exercise 8, using the fares shown in
Figure 1.

11. Find a shortest route (in distance) between computer cen-
ters in each of these pairs of cities in the communications
network shown in Figure 2.
a) Boston and Los Angeles
b) New York and San Francisco
c) Dallas and San Francisco
d) Denver and New York

12. Find a route with the shortest response time between the
pairs of computer centers in Exercise 11 using the re-
sponse times given in Figure 2.

13. Find a least expensive route, in monthly lease charges,
between the pairs of computer centers in Exercise 11 us-
ing the lease charges given in Figure 2.

14. Explain how to find a path with the least number of edges
between two vertices in an undirected graph by consider-
ing it as a shortest path problem in a weighted graph.
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15. Extend Dijkstra’s algorithm for finding the length of a
shortest path between two vertices in a weighted simple
connected graph so that the length of a shortest path be-
tween the vertex a and every other vertex of the graph is
found.

16. Extend Dijkstra’s algorithm for finding the length of a
shortest path between two vertices in a weighted simple
connected graph so that a shortest path between these ver-
tices is constructed.

17. The weighted graphs in the figures here show some major
roads in New Jersey. Part (a) shows the distances between
cities on these roads; part (b) shows the tolls.

Trenton

30 60

42

40

55

85

75

45

35

20

Camden

Newark

Woodbridge

Asbury Park

Atlantic City

Cape May

(a)

Trenton

$0.70 $0.00

$1.00

$1.25

$0.00 $0.75

Camden

Newark

Woodbridge

Asbury Park

Atlantic City

Cape May

(b)

$1.25

$0.75
$0.00

$0.60

a) Find a shortest route in distance between Newark and
Camden, and between Newark and Cape May, using
these roads.

b) Find a least expensive route in terms of total tolls us-
ing the roads in the graph between the pairs of cities
in part (a) of this exercise.

18. Is a shortest path between two vertices in a weighted
graph unique if the weights of edges are distinct?

19. What are some applications where it is necessary to find
the length of a longest simple path between two vertices
in a weighted graph?

20. What is the length of a longest simple path in the
weighted graph in Figure 4 between a and z? Between
c and z?

Floyd’s algorithm, displayed as Algorithm 2, can be used to
find the length of a shortest path between all pairs of vertices
in a weighted connected simple graph. However, this algo-
rithm cannot be used to construct shortest paths. (We assign
an infinite weight to any pair of vertices not connected by an
edge in the graph.)
21. Use Floyd’s algorithm to find the distance between all

pairs of vertices in the weighted graph in Figure 4(a).
∗22. Prove that Floyd’s algorithm determines the shortest dis-

tance between all pairs of vertices in a weighted simple
graph.

∗23. Give a big-O estimate of the number of operations (com-
parisons and additions) used by Floyd’s algorithm to de-
termine the shortest distance between every pair of ver-
tices in a weighted simple graph with n vertices.

∗24. Show that Dijkstra’s algorithm may not work if edges can
have negative weights.

ALGORITHM 2 Floyd’s Algorithm.

procedure Floyd(G: weighted simple graph)
{G has vertices v1, v2,… , vn and weights w(vi, vj)with w(vi, vj) =∞ if {vi, vj} is not an edge}
for i := 1 to n

for j := 1 to n
d(vi, vj) := w(vi, vj)

for i := 1 to n
for j := 1 to n

for k := 1 to n
if d(vj, vi) + d(vi, vk) < d(vj, vk)

then d(vj, vk) := d(vj, vi) + d(vi, vk)
return [

d(vi, vj)
]
{d(vi, vj) is the length of a shortest

path between vi and vj for 1 ≤ i ≤ n, 1 ≤ j ≤ n}

25. Solve the traveling salesperson problem for this graph by
finding the total weight of all Hamilton circuits and de-
termining a circuit with minimum total weight.

a b

d c
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15. Extend Dijkstra’s algorithm for finding the length of a
shortest path between two vertices in a weighted simple
connected graph so that the length of a shortest path be-
tween the vertex a and every other vertex of the graph is
found.

16. Extend Dijkstra’s algorithm for finding the length of a
shortest path between two vertices in a weighted simple
connected graph so that a shortest path between these ver-
tices is constructed.

17. The weighted graphs in the figures here show some major
roads in New Jersey. Part (a) shows the distances between
cities on these roads; part (b) shows the tolls.
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(b)
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a) Find a shortest route in distance between Newark and
Camden, and between Newark and Cape May, using
these roads.

b) Find a least expensive route in terms of total tolls us-
ing the roads in the graph between the pairs of cities
in part (a) of this exercise.

18. Is a shortest path between two vertices in a weighted
graph unique if the weights of edges are distinct?

19. What are some applications where it is necessary to find
the length of a longest simple path between two vertices
in a weighted graph?

20. What is the length of a longest simple path in the
weighted graph in Figure 4 between a and z? Between
c and z?

Floyd’s algorithm, displayed as Algorithm 2, can be used to
find the length of a shortest path between all pairs of vertices
in a weighted connected simple graph. However, this algo-
rithm cannot be used to construct shortest paths. (We assign
an infinite weight to any pair of vertices not connected by an
edge in the graph.)
21. Use Floyd’s algorithm to find the distance between all

pairs of vertices in the weighted graph in Figure 4(a).
∗22. Prove that Floyd’s algorithm determines the shortest dis-

tance between all pairs of vertices in a weighted simple
graph.

∗23. Give a big-O estimate of the number of operations (com-
parisons and additions) used by Floyd’s algorithm to de-
termine the shortest distance between every pair of ver-
tices in a weighted simple graph with n vertices.

∗24. Show that Dijkstra’s algorithm may not work if edges can
have negative weights.

ALGORITHM 2 Floyd’s Algorithm.

procedure Floyd(G: weighted simple graph)
{G has vertices v1, v2,… , vn and weights w(vi, vj)with w(vi, vj) =∞ if {vi, vj} is not an edge}
for i := 1 to n

for j := 1 to n
d(vi, vj) := w(vi, vj)

for i := 1 to n
for j := 1 to n

for k := 1 to n
if d(vj, vi) + d(vi, vk) < d(vj, vk)

then d(vj, vk) := d(vj, vi) + d(vi, vk)
return [

d(vi, vj)
]
{d(vi, vj) is the length of a shortest

path between vi and vj for 1 ≤ i ≤ n, 1 ≤ j ≤ n}

25. Solve the traveling salesperson problem for this graph by
finding the total weight of all Hamilton circuits and de-
termining a circuit with minimum total weight.
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Exercises from Section 10.8: (3), (9), (11)
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Exercises

In Exercises 1–4 construct the dual graph for the map shown.
Then find the number of colors needed to color the map so
that no two adjacent regions have the same color.
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In Exercises 5–11 find the chromatic number of the given
graph.
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12. For the graphs in Exercises 5–11, decide whether it is
possible to decrease the chromatic number by removing
a single vertex and all edges incident with it.

13. Which graphs have a chromatic number of 1?
14. What is the least number of colors needed to color a

map of the United States? Do not consider adjacent states
that meet only at a corner. Suppose that Michigan is one
region. Consider the vertices representing Alaska and
Hawaii as isolated vertices.

15. What is the chromatic number of Wn?
16. Show that a simple graph that has a circuit with an odd

number of vertices in it cannot be colored using two
colors.

17. Schedule the final exams for Math 115, Math 116,
Math 185, Math 195, CS 101, CS 102, CS 273, and
CS 473, using the fewest number of different time slots,
if there are no students taking both Math 115 and CS 473,
both Math 116 and CS 473, both Math 195 and CS 101,
both Math 195 and CS 102, both Math 115 and Math
116, both Math 115 and Math 185, and both Math 185
and Math 195, but there are students in every other pair
of courses.
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Exercises from Section 11.5: (3), (7), (11)
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edge in the simple circuit that does not belong to Sk+1 because Sk+1 is a tree. By starting at an
endpoint of ek+1 that is also an endpoint of one of the edges e1,… , ek, and following the circuit
until it reaches an edge not in Sk+1, we can find an edge e not in Sk+1 that has an endpoint that
is also an endpoint of one of the edges e1, e2,… , ek.

By deleting e from T and adding ek+1, we obtain a tree T ′ with n − 1 edges (it is a tree
because it has no simple circuits). Note that the tree T ′ contains e1, e2,… , ek, ek+1. Furthermore,
because ek+1 was chosen by Prim’s algorithm at the (k + 1)st step, and e was also available at
that step, the weight of ek+1 is less than or equal to the weight of e. From this observation, it
follows that T ′ is also a minimum spanning tree, because the sum of the weights of its edges
does not exceed the sum of the weights of the edges of T . This contradicts the choice of k as
the maximum integer such that a minimum spanning tree exists containing e1,… , ek. Hence,
k = n − 1, and S = T . It follows that Prim’s algorithm produces a minimum spanning tree.

It can be shown (see [CoLeRiSt09]) that to find a minimum spanning tree of a graph with
m edges and n vertices, Kruskal’s algorithm can be carried out using O(m logm) operations and
Prim’s algorithm can be carried out using O(m log n) operations. Consequently, it is preferable
to use Kruskal’s algorithm for graphs that are sparse, that is, where m is very small compared to
C(n, 2) = n(n − 1)∕2, the total number of possible edges in an undirected graph with n vertices.
Otherwise, there is little difference in the complexity of these two algorithms.

Exercises

1. The roads represented by this graph are all unpaved. The
lengths of the roads between pairs of towns are repre-
sented by edge weights. Which roads should be paved
so that there is a path of paved roads between each
pair of towns so that a minimum road length is paved?
(Note: These towns are in Nevada.)
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In Exercises 2–4 use Prim’s algorithm to find a minimum
spanning tree for the given weighted graph.
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5. Use Kruskal’s algorithm to design the communications
network described at the beginning of the section.

6. Use Kruskal’s algorithm to find a minimum spanning tree
for the weighted graph in Exercise 2.

7. Use Kruskal’s algorithm to find a minimum spanning tree
for the weighted graph in Exercise 3.

8. Use Kruskal’s algorithm to find a minimum spanning tree
for the weighted graph in Exercise 4.
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9. Find a connected weighted simple graph with the fewest
edges possible that has more than one minimum spanning
tree.

10. A minimum spanning forest in a weighted graph is
a spanning forest with minimal weight. Explain how
Prim’s and Kruskal’s algorithms can be adapted to con-
struct minimum spanning forests.

A maximum spanning tree of a connected weighted undi-
rected graph is a spanning tree with the largest possible
weight.
11. Devise an algorithm similar to Prim’s algorithm for

constructing a maximum spanning tree of a connected
weighted graph.

12. Devise an algorithm similar to Kruskal’s algorithm for
constructing a maximum spanning tree of a connected
weighted graph.

13. Find a maximum spanning tree for the weighted graph in
Exercise 2.

14. Find a maximum spanning tree for the weighted graph in
Exercise 3.

15. Find a maximum spanning tree for the weighted graph in
Exercise 4.

16. Find the second least expensive communications net-
work connecting the five computer centers in the problem
posed at the beginning of the section.

∗17. Devise an algorithm for finding the second shortest span-
ning tree in a connected weighted graph.

∗18. Show that an edge with smallest weight in a connected
weighted graph must be part of any minimum spanning
tree.

19. Show that there is a unique minimum spanning tree in a
connected weighted graph if the weights of the edges are
all different.

20. Suppose that the computer network connecting the cities
in Figure 1 must contain a direct link between New York
and Denver. What other links should be included so that
there is a link between every two computer centers and
the cost is minimized?

21. Find a spanning tree with minimal total weight contain-
ing the edges {e, i} and {g, k} in the weighted graph in
Figure 3.

22. Describe an algorithm for finding a spanning tree with
minimal weight containing a specified set of edges in a
connected weighted undirected simple graph.

23. Express the algorithm devised in Exercise 22 in pseu-
docode.

Sollin’s algorithm produces a minimum spanning tree from a
connected weighted simple graph G = (V, E) by successively
adding groups of edges. Suppose that the vertices in V are or-
dered. This produces an ordering of the edges where {u0, v0}precedes {u1, v1} if u0 precedes u1 or if u0 = u1 and v0 pre-
cedes v1. The algorithm begins by simultaneously choosing
the edge of least weight incident to each vertex. The first edge
in the ordering is taken in the case of ties. This produces a

graph with no simple circuits, that is, a forest of trees (Ex-
ercise 24 asks for a proof of this fact). Next, simultaneously
choose for each tree in the forest the shortest edge between a
vertex in this tree and a vertex in a different tree. Again the first
edge in the ordering is chosen in the case of ties. (This pro-
duces a graph with no simple circuits containing fewer trees
than were present before this step; see Exercise 24.) Continue
the process of simultaneously adding edges connecting trees
until n − 1 edges have been chosen. At this stage a minimum
spanning tree has been constructed.

∗24. Show that the addition of edges at each stage of Sollin’s
algorithm produces a forest.

25. Use Sollin’s algorithm to produce a minimum spanning
tree for the weighted graph shown in
a) Figure 1.
b) Figure 3.

∗26. Express Sollin’s algorithm in pseudocode.
∗∗27. Prove that Sollin’s algorithm produces a minimum span-

ning tree in a connected undirected weighted graph.
∗28. Show that the first step of Sollin’s algorithm produces a

forest containing at least ⌈n∕2⌉ edges when the input is
an undirected graph with n vertices.

∗29. Show that if there are r trees in the forest at some interme-
diate step of Sollin’s algorithm, then at least ⌈r∕2⌉ edges
are added by the next iteration of the algorithm.

∗30. Show that when given as input an undirected graph with n
vertices, no more than ⌊n∕2k⌋ trees remain after the first
step of Sollin’s algorithm has been carried out and the
second step of the algorithm has been carried out k − 1
times.

∗31. Show that Sollin’s algorithm requires at most log n iter-
ations to produce a minimum spanning tree from a con-
nected undirected weighted graph with n vertices.

32. Prove that Kruskal’s algorithm produces minimum span-
ning trees.

33. Show that if G is a weighted graph with distinct edge
weights, then for every simple circuit of G, the edge of
maximum weight in this circuit does not belong to any
minimum spanning tree of G.

When Kruskal invented the algorithm that finds minimum
spanning trees by adding edges in order of increasing weight
as long as they do not form a simple circuit, he also invented
another algorithm sometimes called the reverse-delete al-
gorithm. This algorithm proceeds by successively deleting
edges of maximum weight from a connected graph as long as
doing so does not disconnect the graph.
34. Express the reverse-delete algorithm in pseudocode.
35. Prove that the reverse-delete algorithm always pro-

duces a minimum spanning tree when given as input a
weighted graph with distinct edge weights. [Hint: Use
Exercise 33.]


