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large integers n. To obtain a lower bound for this sum, we can ignore the first half of the terms.
Summing only the terms greater than ⌈n∕2⌉, we find that

1 + 2 +⋯ + n ≥ ⌈n∕2⌉ + ( ⌈n∕2⌉ + 1) +⋯ + n
≥ ⌈n∕2⌉ + ⌈n∕2⌉ +⋯ + ⌈n∕2⌉
= (n − ⌈n∕2⌉ + 1) ⌈n∕2⌉
≥ (n∕2)(n∕2)
= n2∕4.

This shows that f (n) is Ω(n2). We conclude that f (n) is of order n2, or in symbols, f (n)
is Θ(n2). ◂

Remark: Note that we can also show that f (n) = ∑n
i=1 i is Θ(n2) using the closed formula∑n

i=1 = n(n + 1)∕2 from Table 2 in Section 2.4 and derived in Exercise 37(b) of that section.

EXAMPLE 13 Show that 3x2 + 8x log x is Θ(x2).
Solution: Because 0 ≤ 8x log x ≤ 8x2, it follows that 3x2 + 8x log x ≤ 11x2 for x > 1.Extra 

Examples Consequently, 3x2 + 8x log x is O(x2). Clearly, x2 is O(3x2 + 8x log x). Consequently,
3x2 + 8x log x is Θ(x2). ◂

One useful fact is that the leading term of a polynomial determines its order. For example,
if f (x) = 3x5 + x4 + 17x3 + 2, then f (x) is of order x5. This is stated in Theorem 4, whose proof
is left as Exercise 50.

THEOREM 4 Let f (x) = anxn + an−1xn−1 +⋯ + a1x + a0, where a0, a1,… , an are real numbers with
an ≠ 0. Then f (x) is of order xn.

EXAMPLE 14 The polynomials 3x8 + 10x7 + 221x2 + 1444, x19 − 18x4 − 10,112, and −x99 + 40,001x98 +
100,003x are of orders x8, x19, and x99, respectively. ◂

Unfortunately, as Knuth observed, big-O notation is often used by careless writers and
speakers as if it had the same meaning as big-Theta notation. Keep this in mind when you see
big-O notation used. The recent trend has been to use big-Theta notation whenever both upper
and lower bounds on the size of a function are needed.

Exercises

In Exercises 1–14, to establish a big-O relationship, find wit-
nesses C and k such that |f (x)| ≤ C|g(x)| whenever x > k.
1. Determine whether each of these functions is O(x).

a) f (x) = 10 b) f (x) = 3x + 7
c) f (x) = x2 + x + 1 d) f (x) = 5 log x
e) f (x) = ⌊x⌋ f ) f (x) = ⌈x∕2⌉

2. Determine whether each of these functions is O(x2).
a) f (x) = 17x + 11 b) f (x) = x2 + 1000
c) f (x) = x log x d) f (x) = x4∕2
e) f (x) = 2x f ) f (x) = ⌊x⌋ ⋅ ⌈x⌉

3. Use the definition of “f (x) is O(g(x))” to show that x4 +
9x3 + 4x + 7 is O(x4).
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4. Use the definition of “f (x) is O(g(x))” to show that
2x + 17 is O(3x).

5. Show that (x2 + 1)∕(x + 1) is O(x).
6. Show that (x3 + 2x)∕(2x + 1) is O(x2).
7. Find the least integer n such that f (x) is O(xn) for each of

these functions.
a) f (x) = 2x3 + x2 log x
b) f (x) = 3x3 + (log x)4
c) f (x) = (x4 + x2 + 1)∕(x3 + 1)
d) f (x) = (x4 + 5 log x)∕(x4 + 1)

8. Find the least integer n such that f (x) is O(xn) for each of
these functions.
a) f (x) = 2x2 + x3 log x
b) f (x) = 3x5 + (log x)4
c) f (x) = (x4 + x2 + 1)∕(x4 + 1)
d) f (x) = (x3 + 5 log x)∕(x4 + 1)

9. Show that x2 + 4x + 17 is O(x3) but that x3 is not O(x2 +
4x + 17).

10. Show that x3 is O(x4) but that x4 is not O(x3).
11. Show that 3x4 + 1 is O(x4∕2) and x4∕2 is O(3x4 + 1).
12. Show that x log x is O(x2) but that x2 is not O(x log x).
13. Show that 2n is O(3n) but that 3n is not O(2n). (Note that

this is a special case of Exercise 60.)
14. Determine whether x3 is O(g(x)) for each of these func-

tions g(x).
a) g(x) = x2 b) g(x) = x3
c) g(x) = x2 + x3 d) g(x) = x2 + x4
e) g(x) = 3x f ) g(x) = x3∕2

15. Explain what it means for a function to be O(1).
16. Show that if f (x) is O(x), then f (x) is O(x2).
17. Suppose that f (x), g(x), and h(x) are functions such that

f (x) is O(g(x)) and g(x) is O(h(x)). Show that f (x) is
O(h(x)).

18. Let k be a positive integer. Show that 1k + 2k +⋯+ nk

is O(nk+1).
19. Determine whether each of the functions 2n+1 and 22n

is O(2n).
20. Determine whether each of the functions log(n + 1) and

log(n2 + 1) is O(log n).
21. Arrange the functions√n, 1000 log n, n log n, 2n!, 2n, 3n,

and n2∕1,000,000 in a list so that each function is big-O
of the next function.

22. Arrange the functions (1.5)n, n100, (log n)3, √n log n,
10n, (n!)2, and n99 + n98 in a list so that each function
is big-O of the next function.

23. Suppose that you have two different algorithms for solv-
ing a problem. To solve a problem of size n, the first
algorithm uses exactly n(log n) operations and the sec-
ond algorithm uses exactly n3∕2 operations. As n grows,
which algorithm uses fewer operations?

24. Suppose that you have two different algorithms for solv-
ing a problem. To solve a problem of size n, the first
algorithm uses exactly n22n operations and the second
algorithm uses exactly n! operations. As n grows, which
algorithm uses fewer operations?

25. Give as good a big-O estimate as possible for each of
these functions.
a) (n2 + 8)(n + 1) b) (n log n + n2)(n3 + 2)
c) (n! + 2n)(n3 + log(n2 + 1))

26. Give a big-O estimate for each of these functions. For the
function g in your estimate f (x) is O(g(x)), use a simple
function g of smallest order.
a) (n3+n2 log n)(log n+1) + (17 log n+19)(n3+2)
b) (2n + n2)(n3 + 3n)
c) (nn + n2n + 5n)(n! + 5n)

27. Give a big-O estimate for each of these functions. For
the function g in your estimate that f (x) is O(g(x)), use a
simple function g of the smallest order.
a) n log(n2 + 1) + n2 log n
b) (n log n + 1)2 + (log n + 1)(n2 + 1)
c) n2n + nn2

28. For each function in Exercise 1, determine whether that
function is Ω(x) and whether it is Θ(x).

29. For each function in Exercise 2, determine whether that
function is Ω(x2) and whether it is Θ(x2).

30. Show that each of these pairs of functions are of the same
order.
a) 3x + 7, x
b) 2x2 + x − 7, x2
c) ⌊x + 1∕2⌋, x
d) log(x2 + 1), log2 x
e) log10 x, log2 x

31. Show that f (x) is Θ(g(x)) if and only if f (x) is O(g(x)) and
g(x) is O(f (x)).

32. Show that if f (x) and g(x) are functions from the set
of real numbers to the set of real numbers, then f (x) is
O(g(x)) if and only if g(x) is Ω(f (x)).

33. Show that if f (x) and g(x) are functions from the set
of real numbers to the set of real numbers, then f (x) is
Θ(g(x)) if and only if there are positive constants k, C1,
and C2 such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever
x > k.

34. a) Show that 3x2 + x + 1 is Θ(3x2) by directly finding
the constants k, C1, and C2 in Exercise 33.

b) Express the relationship in part (a) using a picture
showing the functions 3x2 + x + 1, C1 ⋅ 3x2, and C2 ⋅3x2, and the constant k on the x-axis, where C1, C2,
and k are the constants you found in part (a) to show
that 3x2 + x + 1 is Θ(3x2).

35. Express the relationship f (x) is Θ(g(x)) using a picture.
Show the graphs of the functions f (x), C1|g(x)|, and
C2|g(x)|, as well as the constant k on the x-axis.

36. Explain what it means for a function to be Ω(1).
37. Explain what it means for a function to be Θ(1).
38. Give a big-O estimate of the product of the first n odd

positive integers.
39. Show that if f and g are real-valued functions such that

f (x) is O(g(x)), then for every positive integer n, f n(x) is
O(gn(x)). [Note that f n(x) = f (x)n.]

40. Show that for all real numbers a and b with a > 1 and
b > 1, if f (x) is O(logb x), then f (x) is O(loga x).
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25. Give as good a big-O estimate as possible for each of
these functions.
a) (n2 + 8)(n + 1) b) (n log n + n2)(n3 + 2)
c) (n! + 2n)(n3 + log(n2 + 1))

26. Give a big-O estimate for each of these functions. For the
function g in your estimate f (x) is O(g(x)), use a simple
function g of smallest order.
a) (n3+n2 log n)(log n+1) + (17 log n+19)(n3+2)
b) (2n + n2)(n3 + 3n)
c) (nn + n2n + 5n)(n! + 5n)

27. Give a big-O estimate for each of these functions. For
the function g in your estimate that f (x) is O(g(x)), use a
simple function g of the smallest order.
a) n log(n2 + 1) + n2 log n
b) (n log n + 1)2 + (log n + 1)(n2 + 1)
c) n2n + nn2

28. For each function in Exercise 1, determine whether that
function is Ω(x) and whether it is Θ(x).

29. For each function in Exercise 2, determine whether that
function is Ω(x2) and whether it is Θ(x2).

30. Show that each of these pairs of functions are of the same
order.
a) 3x + 7, x
b) 2x2 + x − 7, x2
c) ⌊x + 1∕2⌋, x
d) log(x2 + 1), log2 x
e) log10 x, log2 x

31. Show that f (x) is Θ(g(x)) if and only if f (x) is O(g(x)) and
g(x) is O(f (x)).

32. Show that if f (x) and g(x) are functions from the set
of real numbers to the set of real numbers, then f (x) is
O(g(x)) if and only if g(x) is Ω(f (x)).

33. Show that if f (x) and g(x) are functions from the set
of real numbers to the set of real numbers, then f (x) is
Θ(g(x)) if and only if there are positive constants k, C1,
and C2 such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever
x > k.

34. a) Show that 3x2 + x + 1 is Θ(3x2) by directly finding
the constants k, C1, and C2 in Exercise 33.

b) Express the relationship in part (a) using a picture
showing the functions 3x2 + x + 1, C1 ⋅ 3x2, and C2 ⋅3x2, and the constant k on the x-axis, where C1, C2,
and k are the constants you found in part (a) to show
that 3x2 + x + 1 is Θ(3x2).

35. Express the relationship f (x) is Θ(g(x)) using a picture.
Show the graphs of the functions f (x), C1|g(x)|, and
C2|g(x)|, as well as the constant k on the x-axis.

36. Explain what it means for a function to be Ω(1).
37. Explain what it means for a function to be Θ(1).
38. Give a big-O estimate of the product of the first n odd

positive integers.
39. Show that if f and g are real-valued functions such that

f (x) is O(g(x)), then for every positive integer n, f n(x) is
O(gn(x)). [Note that f n(x) = f (x)n.]

40. Show that for all real numbers a and b with a > 1 and
b > 1, if f (x) is O(logb x), then f (x) is O(loga x).
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4. Use the definition of “f (x) is O(g(x))” to show that
2x + 17 is O(3x).

5. Show that (x2 + 1)∕(x + 1) is O(x).
6. Show that (x3 + 2x)∕(2x + 1) is O(x2).
7. Find the least integer n such that f (x) is O(xn) for each of

these functions.
a) f (x) = 2x3 + x2 log x
b) f (x) = 3x3 + (log x)4
c) f (x) = (x4 + x2 + 1)∕(x3 + 1)
d) f (x) = (x4 + 5 log x)∕(x4 + 1)

8. Find the least integer n such that f (x) is O(xn) for each of
these functions.
a) f (x) = 2x2 + x3 log x
b) f (x) = 3x5 + (log x)4
c) f (x) = (x4 + x2 + 1)∕(x4 + 1)
d) f (x) = (x3 + 5 log x)∕(x4 + 1)

9. Show that x2 + 4x + 17 is O(x3) but that x3 is not O(x2 +
4x + 17).

10. Show that x3 is O(x4) but that x4 is not O(x3).
11. Show that 3x4 + 1 is O(x4∕2) and x4∕2 is O(3x4 + 1).
12. Show that x log x is O(x2) but that x2 is not O(x log x).
13. Show that 2n is O(3n) but that 3n is not O(2n). (Note that

this is a special case of Exercise 60.)
14. Determine whether x3 is O(g(x)) for each of these func-

tions g(x).
a) g(x) = x2 b) g(x) = x3
c) g(x) = x2 + x3 d) g(x) = x2 + x4
e) g(x) = 3x f ) g(x) = x3∕2

15. Explain what it means for a function to be O(1).
16. Show that if f (x) is O(x), then f (x) is O(x2).
17. Suppose that f (x), g(x), and h(x) are functions such that

f (x) is O(g(x)) and g(x) is O(h(x)). Show that f (x) is
O(h(x)).

18. Let k be a positive integer. Show that 1k + 2k +⋯+ nk

is O(nk+1).
19. Determine whether each of the functions 2n+1 and 22n

is O(2n).
20. Determine whether each of the functions log(n + 1) and

log(n2 + 1) is O(log n).
21. Arrange the functions√n, 1000 log n, n log n, 2n!, 2n, 3n,

and n2∕1,000,000 in a list so that each function is big-O
of the next function.

22. Arrange the functions (1.5)n, n100, (log n)3, √n log n,
10n, (n!)2, and n99 + n98 in a list so that each function
is big-O of the next function.

23. Suppose that you have two different algorithms for solv-
ing a problem. To solve a problem of size n, the first
algorithm uses exactly n(log n) operations and the sec-
ond algorithm uses exactly n3∕2 operations. As n grows,
which algorithm uses fewer operations?

24. Suppose that you have two different algorithms for solv-
ing a problem. To solve a problem of size n, the first
algorithm uses exactly n22n operations and the second
algorithm uses exactly n! operations. As n grows, which
algorithm uses fewer operations?

25. Give as good a big-O estimate as possible for each of
these functions.
a) (n2 + 8)(n + 1) b) (n log n + n2)(n3 + 2)
c) (n! + 2n)(n3 + log(n2 + 1))

26. Give a big-O estimate for each of these functions. For the
function g in your estimate f (x) is O(g(x)), use a simple
function g of smallest order.
a) (n3+n2 log n)(log n+1) + (17 log n+19)(n3+2)
b) (2n + n2)(n3 + 3n)
c) (nn + n2n + 5n)(n! + 5n)

27. Give a big-O estimate for each of these functions. For
the function g in your estimate that f (x) is O(g(x)), use a
simple function g of the smallest order.
a) n log(n2 + 1) + n2 log n
b) (n log n + 1)2 + (log n + 1)(n2 + 1)
c) n2n + nn2

28. For each function in Exercise 1, determine whether that
function is Ω(x) and whether it is Θ(x).

29. For each function in Exercise 2, determine whether that
function is Ω(x2) and whether it is Θ(x2).

30. Show that each of these pairs of functions are of the same
order.
a) 3x + 7, x
b) 2x2 + x − 7, x2
c) ⌊x + 1∕2⌋, x
d) log(x2 + 1), log2 x
e) log10 x, log2 x

31. Show that f (x) is Θ(g(x)) if and only if f (x) is O(g(x)) and
g(x) is O(f (x)).

32. Show that if f (x) and g(x) are functions from the set
of real numbers to the set of real numbers, then f (x) is
O(g(x)) if and only if g(x) is Ω(f (x)).

33. Show that if f (x) and g(x) are functions from the set
of real numbers to the set of real numbers, then f (x) is
Θ(g(x)) if and only if there are positive constants k, C1,
and C2 such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever
x > k.

34. a) Show that 3x2 + x + 1 is Θ(3x2) by directly finding
the constants k, C1, and C2 in Exercise 33.

b) Express the relationship in part (a) using a picture
showing the functions 3x2 + x + 1, C1 ⋅ 3x2, and C2 ⋅3x2, and the constant k on the x-axis, where C1, C2,
and k are the constants you found in part (a) to show
that 3x2 + x + 1 is Θ(3x2).

35. Express the relationship f (x) is Θ(g(x)) using a picture.
Show the graphs of the functions f (x), C1|g(x)|, and
C2|g(x)|, as well as the constant k on the x-axis.

36. Explain what it means for a function to be Ω(1).
37. Explain what it means for a function to be Θ(1).
38. Give a big-O estimate of the product of the first n odd

positive integers.
39. Show that if f and g are real-valued functions such that

f (x) is O(g(x)), then for every positive integer n, f n(x) is
O(gn(x)). [Note that f n(x) = f (x)n.]

40. Show that for all real numbers a and b with a > 1 and
b > 1, if f (x) is O(logb x), then f (x) is O(loga x).
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of the next function.
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10n, (n!)2, and n99 + n98 in a list so that each function
is big-O of the next function.
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TABLE 2 The Computer Time Used by Algorithms.
Problem Size Bit Operations Used

n !"#n n n !"# n n2 2n n!

10 3 × 10−11 s 10−10 s 3 × 10−10 s 10−9 s 10−8 s 3 × 10−7 s
102 7 × 10−11 s 10−9 s 7 × 10−9 s 10−7 s 4 × 1011 yr *
103 1.0 × 10−10 s 10−8 s 1 × 10−7 s 10−5 s * *
104 1.3 × 10−10 s 10−7 s 1 × 10−6 s 10−3 s * *
105 1.7 × 10−10 s 10−6 s 2 × 10−5 s 0.1 s * *
106 2 × 10−10 s 10−5 s 2 × 10−4 s 0.17 min * *

computer being used. Often, instead of a big-Θ estimate on the worst-case time complexity of
an algorithm, we have only a big-O estimate. Note that a big-O estimate on the time complexity
of an algorithm provides an upper, but not a lower, bound on the worst-case time required for
the algorithm as a function of the input size. Nevertheless, for simplicity, we will often use
big-O estimates when describing the time complexity of algorithms, with the understanding
that big-Θ estimates would provide more information.

Table 2 displays the time needed to solve problems of various sizes with an algorithm using
the indicated number n of bit operations, assuming that each bit operation takes 10−11 seconds, a
reasonable estimate of the time required for a bit operation using the fastest computers available
in 2018. Times of more than 10100 years are indicated with an asterisk. In the future, these times
will decrease as faster computers are developed. We can use the times shown in Table 2 to see
whether it is reasonable to expect a solution to a problem of a specified size using an algorithm
with known worst-case time complexity when we run this algorithm on a modern computer.
Note that we cannot determine the exact time a computer uses to solve a problem with input of
a particular size because of a myriad of issues involving computer hardware and the particular
software implementation of the algorithm.

It is important to have a reasonable estimate for how long it will take a computer to solve a
problem. For instance, if an algorithm requires approximately 10 hours, it may be worthwhile
to spend the computer time (and money) required to solve this problem. But, if an algorithm
requires approximately 10 billion years to solve a problem, it would be unreasonable to use re-
sources to implement this algorithm. One of the most interesting phenomena of modern technol-
ogy is the tremendous increase in the speed and memory space of computers. Another important
factor that decreases the time needed to solve problems on computers is parallel processing,
which is the technique of performing sequences of operations simultaneously.

Efficient algorithms, including most algorithms with polynomial time complexity, benefit
most from significant technology improvements. However, these technology improvements
offer little help in overcoming the complexity of algorithms of exponential or factorial time
complexity. Because of the increased speed of computation, increases in computer memory, and
the use of algorithms that take advantage of parallel processing, many problems that were con-
sidered impossible to solve five years ago are now routinely solved, and certainly five years from
now this statement will still be true. This is even true when the algorithms used are intractable.

Exercises

1. Give a big-O estimate for the number of operations
(where an operation is an addition or a multiplication)
used in this segment of an algorithm.

t := 0
for i := 1 to 3

for j := 1 to 4
t := t + ij

2. Give a big-O estimate for the number additions used in
this segment of an algorithm.

t := 0
for i := 1 to n

for j := 1 to n
t := t + i + j
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3. Give a big-O estimate for the number of operations,
where an operation is a comparison or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the for loops, where
a1, a2, ..., an are positive real numbers).

m := 0
for i := 1 to n

for j := i + 1 to n
m := max(aiaj, m)

4. Give a big-O estimate for the number of operations,
where an operation is an addition or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the while loop).

i := 1
t := 0
while i ≤ n

t := t + i
i := 2i

5. How many comparisons are used by the algorithm given
in Exercise 16 of Section 3.1 to find the smallest natural
number in a sequence of n natural numbers?

6. a) Use pseudocode to describe the algorithm that puts
the first four terms of a list of real numbers of arbitrary
length in increasing order using the insertion sort.

b) Show that this algorithm has time complexity O(1) in
terms of the number of comparisons used.

7. Suppose that an element is known to be among the first
four elements in a list of 32 elements. Would a lin-
ear search or a binary search locate this element more
rapidly?

8. Given a real number x and a positive integer k, determine
the number of multiplications used to find x2k starting
with x and successively squaring (to find x2, x4, and so
on). Is this a more efficient way to find x2k than by multi-
plying x by itself the appropriate number of times?

9. Give a big-O estimate for the number of comparisons
used by the algorithm that determines the number of 1s
in a bit string by examining each bit of the string to deter-
mine whether it is a 1 bit (see Exercise 25 of Section 3.1).

∗10. a) Show that this algorithm determines the number of 1
bits in the bit string S:

procedure bit count(S: bit string)
count := 0
while S ≠ 0

count := count + 1
S := S ∧ (S − 1)

return count {count is the number of 1s in S}

Here S − 1 is the bit string obtained by changing the
rightmost 1 bit of S to a 0 and all the 0 bits to the
right of this to 1s. [Recall that S ∧ (S − 1) is the bit-
wise AND of S and S − 1.]

b) How many bitwise AND operations are needed to find
the number of 1 bits in a string S using the algorithm
in part (a)?

11. a) Suppose we have n subsets S1, S2,… , Sn of the set
{1, 2,… , n}. Express a brute-force algorithm that de-
termines whether there is a disjoint pair of these sub-
sets. [Hint: The algorithm should loop through the
subsets; for each subset Si, it should then loop through
all other subsets; and for each of these other subsets
Sj, it should loop through all elements k in Si to deter-
mine whether k also belongs to Sj.]

b) Give a big-O estimate for the number of times the al-
gorithm needs to determine whether an integer is in
one of the subsets.

12. Consider the following algorithm, which takes as input a
sequence of n integers a1, a2,… , an and produces as out-
put a matrix M = {mij} where mij is the minimum term
in the sequence of integers ai, ai+1,… , aj for j ≥ i and
mij = 0 otherwise.

initialize M so that mij = ai if j ≥ i and mij = 0
otherwise

for i := 1 to n
for j := i + 1 to n

for k := i + 1 to j
mij := min(mij, ak)

return M= {mij} {mij is the minimum term of
ai, ai+1,… , aj}

a) Show that this algorithm uses O(n3) comparisons to
compute the matrix M.

b) Show that this algorithm uses Ω(n3) comparisons to
compute the matrix M. Using this fact and part (a),
conclude that the algorithms uses Θ(n3) comparisons.
[Hint: Only consider the cases where i ≤ n∕4 and
j ≥ 3n∕4 in the two outer loops in the algorithm.]

13. The conventional algorithm for evaluating a polyno-
mial anxn + an−1xn−1 +⋯ + a1x + a0 at x = c can be
expressed in pseudocode by
procedure polynomial(c, a0, a1,… , an: real numbers)

power := 1
y := a0
for i := 1 to n

power := power ∗ c
y := y + ai ∗ power

return y {y = ancn + an−1cn−1 +⋯ + a1c + a0}

where the final value of y is the value of the polynomial
at x = c.
a) Evaluate 3x2 + x + 1 at x = 2 by working through

each step of the algorithm showing the values as-
signed at each assignment step.

b) Exactly how many multiplications and additions are
used to evaluate a polynomial of degree n at x = c?
(Do not count additions used to increment the loop
variable.)

14. There is a more efficient algorithm (in terms of the
number of multiplications and additions used) for eval-
uating polynomials than the conventional algorithm de-
scribed in the previous exercise. It is called Horner’s
method. This pseudocode shows how to use this method
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to find the value of anxn + an−1xn−1 +⋯ + a1x + a0at x = c.
procedure Horner(c, a0, a1, a2,… , an: real numbers)

y := an
for i := 1 to n

y := y ∗ c + an−i
return y {y = ancn + an−1cn−1 +⋯ + a1c + a0}

a) Evaluate 3x2 + x + 1 at x = 2 by working through
each step of the algorithm showing the values as-
signed at each assignment step.

b) Exactly how many multiplications and additions are
used by this algorithm to evaluate a polynomial of
degree n at x = c? (Do not count additions used to
increment the loop variable.)

15. What is the largest n for which one can solve within one
second a problem using an algorithm that requires f (n)
bit operations, where each bit operation is carried out in
10−9 seconds, with these functions f (n)?
a) log n b) n c) n log n
d) n2 e) 2n f ) n!

16. What is the largest n for which one can solve within a
day using an algorithm that requires f (n) bit operations,
where each bit operation is carried out in 10−11 seconds,
with these functions f (n)?
a) log n b) 1000n c) n2
d) 1000n2 e) n3 f ) 2n

g) 22n h) 22n

17. What is the largest n for which one can solve within
a minute using an algorithm that requires f (n) bit op-
erations, where each bit operation is carried out in
10−12 seconds, with these functions f (n)?
a) log log n b) log n c) (log n)2
d) 1,000,000n e) n2 f ) 2n

g) 2n2

18. How much time does an algorithm take to solve a prob-
lem of size n if this algorithm uses 2n2 + 2n operations,
each requiring 10−9 seconds, with these values of n?
a) 10 b) 20 c) 50 d) 100

19. How much time does an algorithm using 250 operations
need if each operation takes these amounts of time?
a) 10−6 s b) 10−9 s c) 10−12 s

20. What is the effect in the time required to solve a prob-
lem when you double the size of the input from n to
2n, assuming that the number of milliseconds the algo-
rithm uses to solve the problem with input size n is each
of these functions? [Express your answer in the simplest
form possible, either as a ratio or a difference. Your an-
swer may be a function of n or a constant.]
a) log log n b) log n c) 100n
d) n log n e) n2 f ) n3
g) 2n

21. What is the effect in the time required to solve a prob-
lem when you increase the size of the input from n to
n + 1, assuming that the number of milliseconds the al-
gorithm uses to solve the problem with input size n is

each of these functions? [Express your answer in the sim-
plest form possible, either as a ratio or a difference. Your
answer may be a function of n or a constant.]
a) log n b) 100n c) n2
d) n3 e) 2n f ) 2n2

g) n!
22. Determine the least number of comparisons, or best-case

performance,
a) required to find the maximum of a sequence of n in-

tegers, using Algorithm 1 of Section 3.1.
b) used to locate an element in a list of n terms with a

linear search.
c) used to locate an element in a list of n terms using a

binary search.
23. Analyze the average-case performance of the linear

search algorithm, if exactly half the time the element x
is not in the list, and if x is in the list, it is equally likely
to be in any position.

24. An algorithm is called optimal for the solution of a prob-
lem with respect to a specified operation if there is no al-
gorithm for solving this problem using fewer operations.
a) Show that Algorithm 1 in Section 3.1 is an optimal

algorithm with respect to the number of comparisons
of integers. [Note: Comparisons used for bookkeep-
ing in the loop are not of concern here.]

b) Is the linear search algorithm optimal with respect to
the number of comparisons of integers (not including
comparisons used for bookkeeping in the loop)?

25. Describe the worst-case time complexity, measured in
terms of comparisons, of the ternary search algorithm de-
scribed in Exercise 27 of Section 3.1.

26. Describe the worst-case time complexity, measured in
terms of comparisons, of the search algorithm described
in Exercise 28 of Section 3.1.

27. Analyze the worst-case time complexity of the algorithm
you devised in Exercise 29 of Section 3.1 for locating a
mode in a list of nondecreasing integers.

28. Analyze the worst-case time complexity of the algorithm
you devised in Exercise 30 of Section 3.1 for locating all
modes in a list of nondecreasing integers.

29. Analyze the worst-case time complexity of the algorithm
you devised in Exercise 33 of Section 3.1 for finding the
first term of a sequence of integers equal to some previ-
ous term.

30. Analyze the worst-case time complexity of the algorithm
you devised in Exercise 34 of Section 3.1 for finding all
terms of a sequence that are greater than the sum of all
previous terms.

31. Analyze the worst-case time complexity of the algorithm
you devised in Exercise 35 of Section 3.1 for finding the
first term of a sequence less than the immediately preced-
ing term.

32. Determine the worst-case complexity in terms of com-
parisons of the algorithm from Exercise 5 in Section 3.1
for determining all values that occur more than once in a
sorted list of integers.
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to find the value of anxn + an−1xn−1 +⋯ + a1x + a0at x = c.
procedure Horner(c, a0, a1, a2,… , an: real numbers)

y := an
for i := 1 to n

y := y ∗ c + an−i
return y {y = ancn + an−1cn−1 +⋯ + a1c + a0}

a) Evaluate 3x2 + x + 1 at x = 2 by working through
each step of the algorithm showing the values as-
signed at each assignment step.

b) Exactly how many multiplications and additions are
used by this algorithm to evaluate a polynomial of
degree n at x = c? (Do not count additions used to
increment the loop variable.)

15. What is the largest n for which one can solve within one
second a problem using an algorithm that requires f (n)
bit operations, where each bit operation is carried out in
10−9 seconds, with these functions f (n)?
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d) n2 e) 2n f ) n!

16. What is the largest n for which one can solve within a
day using an algorithm that requires f (n) bit operations,
where each bit operation is carried out in 10−11 seconds,
with these functions f (n)?
a) log n b) 1000n c) n2
d) 1000n2 e) n3 f ) 2n

g) 22n h) 22n
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d) 1,000,000n e) n2 f ) 2n

g) 2n2
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each requiring 10−9 seconds, with these values of n?
a) 10 b) 20 c) 50 d) 100
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33. Determine the worst-case complexity in terms of com-
parisons of the algorithm from Exercise 9 in Section 3.1
for determining whether a string of n characters is a palin-
drome.

34. How many comparisons does the selection sort (see
preamble to Exercise 43 in Section 3.1) use to sort n
items? Use your answer to give a big-O estimate of the
complexity of the selection sort in terms of number of
comparisons for the selection sort.

35. Determine a big-O estimate for the worst-case complex-
ity in terms of number of comparisons used and the
number of terms swapped by the binary insertion sort de-
scribed in the preamble to Exercise 49 in Section 3.1.

36. Determine the number of character comparisons used by
the naive string matcher to look for a pattern of m char-
acters in a text with n characters if the first character of
the pattern does not occur in the text.

37. Determine a big-O estimate of the number of character
comparisons used by the naive string matcher to find all
occurrences of a pattern of m characters in a text with n
characters, in terms of the parameters m and n.

38. Determine big-O estimates for the algorithms for decid-
ing whether two strings are anagrams from parts (a) and
(b) of Exercise 31 of Section 3.1.

39. Determine big-O estimates for the algorithms for finding
the closest of n real numbers from parts (a) and (b) of
Exercise 32 of Section 3.1.

40. Show that the greedy algorithm for making change for n
cents using quarters, dimes, nickels, and pennies has O(n)
complexity measured in terms of comparisons needed.

Exercises 41 and 42 deal with the problem of scheduling the
most talks possible given the start and end times of n talks.
41. Find the complexity of a brute-force algorithm for

scheduling the talks by examining all possible subsets of
the talks. [Hint: Use the fact that a set with n elements
has 2n subsets.]

42. Find the complexity of the greedy algorithm for schedul-
ing the most talks by adding at each step the talk with the

earliest end time compatible with those already sched-
uled (Algorithm 7 in Section 3.1). Assume that the
talks are not already sorted by earliest end time and as-
sume that the worst-case time complexity of sorting is
O(n log n).

43. Describe how the number of comparisons used in the
worst case changes when these algorithms are used to
search for an element of a list when the size of the list
doubles from n to 2n, where n is a positive integer.
a) linear search b) binary search

44. Describe how the number of comparisons used in the
worst case changes when the size of the list to be sorted
doubles from n to 2n, where n is a positive integer when
these sorting algorithms are used.
a) bubble sort b) insertion sort
c) selection sort (described in the preamble to Exer-

cise 43 in Section 3.1)
d) binary insertion sort (described in the preamble to Ex-

ercise 49 in Section 3.1)
An n × n matrix is called upper triangular if aij = 0 when-
ever i > j.
45. From the definition of the matrix product, describe an al-

gorithm in English for computing the product of two up-
per triangular matrices that ignores those products in the
computation that are automatically equal to zero.

46. Give a pseudocode description of the algorithm in Exer-
cise 45 for multiplying two upper triangular matrices.

47. How many multiplications of entries are used by the al-
gorithm found in Exercise 45 for multiplying two n × n
upper triangular matrices?

In Exercises 48–49 assume that the number of multiplications
of entries used to multiply a p × q matrix and a q × r matrix
is pqr.
48. What is the best order to form the product ABC if A,

B, and C are matrices with dimensions 3 × 9, 9 × 4, and
4 × 2, respectively?

49. What is the best order to form the product ABCD if A, B,
C, and D are matrices with dimensions 30 × 10, 10 × 40,
40 × 50, and 50 × 30, respectively?

Key Terms and Results
TERMS
algorithm: a finite sequence of precise instructions for per-

forming a computation or solving a problem
searching algorithm: the problem of locating an element in a

list
linear search algorithm: a procedure for searching a list ele-

ment by element
binary search algorithm: a procedure for searching an or-

dered list by successively splitting the list in half
sorting: the reordering of the elements of a list into prescribed

order

string searching: given a string, determining all the occur-
rences where this string occurs within a longer string

f (x) is O(g(x)): the fact that |f (x)| ≤ C|g(x)| for all x > k for
some constants C and k

witness to the relationship f (x) is O(g(x)): a pair C and k such
that |f (x)| ≤ C|g(x)| whenever x > k

f (x) is !(g(x)): the fact that |f (x)| ≥ C|g(x)| for all x > k for
some positive constants C and k

f (x) is "(g(x)): the fact that f (x) is both O(g(x)) and Ω(g(x))
time complexity: the amount of time required for an algorithm

to solve a problem
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