. Determine whether each of these functions is O(x?).
a) f(x)=17x + 11 b) f(x) = x> + 1000
¢) f(x) =xlogx d) f(x)=x*/2

e f(x)=2" f) f&) = [x] - [x]

. Find the least integer n such that f(x) is O(x") for each of
these functions.

a) f(x) = 2x* + x* logx

b) f(x) = 3x° + (log x)*

O fO=0*+2+1D/*+1)

d) f(x) = (3 +5logx)/(x* + 1)

12. Show that xlog x is O(x?) but that x? is not O(x log x).

14. Determine whether x* is O(g(x)) for each of these func-
tions g(x).

a) g(x) =x* b) gx) =x°
0 g)=x+x d) g0 =22 +x*
e) gx)=3" f) g(x) =x3/2

2. Give a big-O estimate for the number additions used in

this segment of an algorithm.
t:=0
fori:=1ton
forj:=1ton
ti=t+i+j

4. Give a big-O estimate for the number of operations,

where an operation is an addition or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the while loop).

i:=1

t:=0

whilei <n
t=t+i
i:=2i

16. What is the largest n for which one can solve within a

day using an algorithm that requires f(n) bit operations,
where each bit operation is carried out in 10~!! seconds,
with these functions f(7)?

a) logn b) 1000n c) n?
d) 1000#2 e) n’ f) 2"
g) 22n h) 22”

22.

26.

34.

18.

20.

42,

Exercises from Section 3.2: (2), (8), (12), (14), (22), (26), (34)

Arrange the functions (1.5)", n'®, (logn)?, \/ﬁlog n,
10", (n!)?, and n*° + n°® in a list so that each function
is big-O of the next function.

Give a big-O estimate for each of these functions. For the
function g in your estimate f(x) is O(g(x)), use a simple
function g of smallest order.

a) (n’+n?logn)(logn+1)+ (17log n+19)(n*+2)

b) (2" +n?)@n> +3")

¢) (" +n2"+5")(n! +5"

a) Show that 3x%> + x + 1 is ®(3x?) by directly finding
the constants k, C;, and C, in Exercise 33.

b) Express the relationship in part (a) using a picture
showing the functions 3x*> + x + 1, C, - 3x%, and C, -
3x2, and the constant k on the x-axis, where C v G,
and k are the constants you found in part (a) to show
that 3x% + x + 1 is ©(3x?).

Exercises from Section 3.3: (2), (4), (16), (18), (20), (42)

How much time does an algorithm take to solve a prob-
lem of size n if this algorithm uses 21> + 2" operations,
each requiring 10~ seconds, with these values of n?

a) 10 b) 20 ¢) 50 d) 100

What is the effect in the time required to solve a prob-
lem when you double the size of the input from 7 to
2n, assuming that the number of milliseconds the algo-
rithm uses to solve the problem with input size n is each
of these functions? [Express your answer in the simplest
form possible, either as a ratio or a difference. Your an-
swer may be a function of # or a constant.]

a) loglogn b) logn c) 100n
d) nlogn e) n? f) n’
g 2

Find the complexity of the greedy algorithm for schedul-
ing the most talks by adding at each step the talk with the
earliest end time compatible with those already sched-
uled (Algorithm 7 in Section 3.1). Assume that the
talks are not already sorted by earliest end time and as-
sume that the worst-case time complexity of sorting is
O(nlogn).



