2. Determine whether each of these functions is $O(x^2)$.

a) $f(x) = 17x + 11$	b) $f(x) = x^2 + 1000$
c) $f(x) = x \log x$	d) $f(x) = x^4/2$
e) $f(x) = 2^x$	f) $f(x) = \lfloor x \rfloor \cdot \lceil x \rceil$

8. Find the least integer *n* such that f(x) is $O(x^n)$ for each of these functions.

a) $f(x) = 2x^2 + x^3 \log x$ b) $f(x) = 3x^5 + (\log x)^4$ c) $f(x) = (x^4 + x^2 + 1)/(x^4 + 1)$ d) $f(x) = (x^3 + 5 \log x)/(x^4 + 1)$

- **12.** Show that $x \log x$ is $O(x^2)$ but that x^2 is not $O(x \log x)$.
- **14.** Determine whether x^3 is O(g(x)) for each of these functions g(x).

a) $g(x) = x^2$ b) $g(x) = x^3$ c) $g(x) = x^2 + x^3$ d) $g(x) = x^2 + x^4$ e) $g(x) = 3^x$ f) $g(x) = x^3/2$

- Exercises from Section 3.3: (2), (4), (16), (18), (20), (42)
- **2.** Give a big-*O* estimate for the number additions used in this segment of an algorithm.
 - t := 0for i := 1 to nfor j := 1 to nt := t + i + j
- **4.** Give a big-*O* estimate for the number of operations, where an operation is an addition or a multiplication, used in this segment of an algorithm (ignoring comparisons used to test the conditions in the **while** loop).
 - i := 1 t := 0while $i \le n$ t := t + ii := 2i
- 16. What is the largest *n* for which one can solve within a day using an algorithm that requires f(n) bit operations, where each bit operation is carried out in 10^{-11} seconds, with these functions f(n)?

a) log <i>n</i>	b) 1000 <i>n</i>	c) n^2
d) 1000 <i>n</i> ²	e) n^3	f) 2 ⁿ
g) 2^{2n}	h) 2^{2^n}	

- **22.** Arrange the functions $(1.5)^n$, n^{100} , $(\log n)^3$, $\sqrt{n} \log n$, 10^n , $(n!)^2$, and $n^{99} + n^{98}$ in a list so that each function is big-*O* of the next function.
- **26.** Give a big-*O* estimate for each of these functions. For the function g in your estimate f(x) is O(g(x)), use a simple function g of smallest order.
 - **a)** $(n^3 + n^2 \log n)(\log n + 1) + (17 \log n + 19)(n^3 + 2)$
 - **b**) $(2^n + n^2)(n^3 + 3^n)$
 - c) $(n^n + n2^n + 5^n)(n! + 5^n)$
- **34.** a) Show that $3x^2 + x + 1$ is $\Theta(3x^2)$ by directly finding the constants k, C_1 , and C_2 in Exercise 33.
 - **b)** Express the relationship in part (a) using a picture showing the functions $3x^2 + x + 1$, $C_1 \cdot 3x^2$, and $C_2 \cdot 3x^2$, and the constant *k* on the *x*-axis, where C_1 , C_2 , and *k* are the constants you found in part (a) to show that $3x^2 + x + 1$ is $\Theta(3x^2)$.

- 18. How much time does an algorithm take to solve a problem of size *n* if this algorithm uses 2n² + 2ⁿ operations, each requiring 10⁻⁹ seconds, with these values of *n*?
 a) 10
 b) 20
 c) 50
 d) 100
- **20.** What is the effect in the time required to solve a problem when you double the size of the input from n to 2n, assuming that the number of milliseconds the algorithm uses to solve the problem with input size n is each of these functions? [Express your answer in the simplest form possible, either as a ratio or a difference. Your answer may be a function of n or a constant.]
 - a) $\log \log n$ b) $\log n$ c) 100n

 d) $n \log n$ e) n^2 f) n^3

 g) 2^n f) n^3
- **42.** Find the complexity of the greedy algorithm for scheduling the most talks by adding at each step the talk with the earliest end time compatible with those already scheduled (Algorithm 7 in Section 3.1). Assume that the talks are not already sorted by earliest end time and assume that the worst-case time complexity of sorting is $O(n \log n)$.