Exercises from Section 2.1: (8), (12), (18), (34), (36), (42)

- 8. Suppose that $A = \{2, 4, 6\}$, $B = \{2, 6\}$, $C = \{4, 6\}$, and $D = \{4, 6, 8\}$. Determine which of these sets are subsets of which other of these sets.
- 12. Determine whether these statements are true or false.
 - a) $\emptyset \in \{\emptyset\}$ b) $\emptyset \in \{\emptyset, \{\emptyset\}\}$ c) $\{\emptyset\} \in \{\emptyset\}$ d) $\{\emptyset\} \in \{\{\emptyset\}\}$
 - e) $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$ f) $\{\{\emptyset\}\} \subset \{\emptyset, \{\emptyset\}\}$
 - $\mathbf{g} \{\{\emptyset\}\} \subset \{\{\emptyset\}, \{\emptyset\}\}$
- **18.** Use a Venn diagram to illustrate the relationships $A \subset B$ and $A \subset C$.

- **34.** Let $A = \{a, b, c\}, B = \{x, y\}$, and $C = \{0, 1\}$. Find **a**) $A \times B \times C$. **b**) $C \times B \times A$. **c**) $C \times A \times B$. **d**) $B \times B \times B$.
- **36.** Find A^3 if **a)** $A = \{a\}$. **b)** $A = \{0, a\}$.
- **42.** Explain why $(A \times B) \times (C \times D)$ and $A \times (B \times C) \times D$ are not the same.

Exercises from Section 2.2: (14), (28), (38), (40)

- **14.** Find the sets A and B if $A B = \{1, 5, 7, 8\}$, $B A = \{2, 10\}$, and $A \cap B = \{3, 6, 9\}$.
- 28. Draw the Venn diagrams for each of these combinations of the sets *A*, *B*, and *C*.
 a) A ∩ (B ∪ C)
 b) A ∩ B ∩ C
 c) (A − B) ∪ (A − C) ∪ (B − C)

The symmetric difference of *A* and *B*, denoted by $A \oplus B$, is the set containing those elements in either *A* or *B*, but not in both *A* and *B*.

- **38.** Find the symmetric difference of $\{1, 3, 5\}$ and $\{1, 2, 3\}$.
- **40.** Draw a Venn diagram for the symmetric difference of the sets *A* and *B*.

Exercises from Section 2.3: (10), (14), (22), (34)

- **10.** Determine whether each of these functions from $\{a, b, c, d\}$ to itself is one-to-one.
 - **a**) f(a) = b, f(b) = a, f(c) = c, f(d) = d
 - **b**) f(a) = b, f(b) = b, f(c) = d, f(d) = c
 - c) f(a) = d, f(b) = b, f(c) = c, f(d) = d
- **14.** Determine whether $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if
 - **a**) f(m, n) = 2m n.
 - **b**) $f(m, n) = m^2 n^2$.
 - c) f(m, n) = m + n + 1.
 - **d**) f(m, n) = |m| |n|.
 - e) $f(m, n) = m^2 4$.

- 22. Determine whether each of these functions is a bijection from **R** to **R**.
 - a) f(x) = -3x + 4b) $f(x) = -3x^2 + 7$ c) f(x) = (x + 1)/(x + 2)
 - **d**) $f(x) = x^5 + 1$
- **34.** Suppose that *g* is a function from *A* to *B* and *f* is a function from *B* to *C*. Prove each of these statements.
 - a) If $f \circ g$ is onto, then f must also be onto.
 - **b**) If $f \circ g$ is one-to-one, then g must also be one-to-one.
 - c) If f ∘ g is a bijection, then g is onto if and only if f is one-to-one.

Exercises from Section 9.1: (2), (6), (10), (44)

- 2. a) List all the ordered pairs in the relation $R = \{(a, b) \mid a \text{ divides } b\}$ on the set $\{1, 2, 3, 4, 5, 6\}$. b) Display this relation graphically, as was done in Example 4.
 - Display this relation in tabular form, as was done in c) Example 4.
- 6. Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \in R$ if and only if
 - **a**) x + y = 0. **b**) $x = \pm y$.
 - c) x y is a rational number.
 - **d**) x = 2y. e) $xy \ge 0$. **g**) x = 1.
 - **f**) xy = 0.
 - **h**) x = 1 or y = 1.

Exercises from Section 9.3: (2), (8), (32)

- **2.** Represent each of these relations on $\{1, 2, 3, 4\}$ with a matrix (with the elements of this set listed in increasing order).
 - **a**) $\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$
 - **b**) $\{(1, 1), (1, 4), (2, 2), (3, 3), (4, 1)\}$
 - c) $\{(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (2, 4), (3, 1), (3, 2), (3, 2), (3, 3), (3, 2), (3, 3),$ (3, 4), (4, 1), (4, 2), (4, 3)**d**) $\{(2, 4), (3, 1), (3, 2), (3, 4)\}$
- 4. List the ordered pairs in the relations on {1, 2, 3, 4} corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order).

$$\mathbf{a} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \qquad \qquad \mathbf{b} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{c} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

- 10. Give an example of a relation on a set that is a) both symmetric and antisymmetric.
 - b) neither symmetric nor antisymmetric.
- **44.** List the 16 different relations on the set $\{0, 1\}$.

32. Determine whether the relations represented by the directed graphs shown in Exercises 26-28 are reflexive, irreflexive, symmetric, antisymmetric, asymmetric, and/or transitive.

Exercises from Section 9.5: (2), (8), (16), (24)

- **2.** Which of these relations on the set of all people are equivalence relations? Determine the properties of an equivalence relation that the others lack.
 - a) $\{(a, b) \mid a \text{ and } b \text{ are the same age}\}$
 - **b**) $\{(a, b) \mid a \text{ and } b \text{ have the same parents}\}$
 - c) $\{(a, b) \mid a \text{ and } b \text{ share a common parent}\}$
 - **d**) $\{(a, b) \mid a \text{ and } b \text{ have met}\}$
 - e) $\{(a, b) \mid a \text{ and } b \text{ speak a common language}\}$
- **8.** Let *R* be the relation on the set of all sets of real numbers such that *S R T* if and only if *S* and *T* have the same cardinality. Show that *R* is an equivalence relation. What are the equivalence classes of the sets {0, 1, 2} and **Z**?

16. Let *R* be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if ad = bc. Show that *R* is an equivalence relation.

24. Determine whether the relations represented by these zero–one matrices are equivalence relations.