Exercises from Section 1.1

14. Let \(p, q, \) and \(r \) be the propositions
\[p: \text{You have the flu.} \]
\[q: \text{You miss the final examination.} \]
\[r: \text{You pass the course.} \]
Express each of these propositions as an English sentence.
\[a) \ p \implies q \quad b) \ \neg q \iff r \]
\[c) \ q \iff \neg r \quad d) \ p \lor q \lor r \]
\[e) \ (p \iff \neg r) \lor (q \iff \neg r) \quad f) \ (p \land q) \land (\neg q \land r) \]

16. Let \(p, q, \) and \(r \) be the propositions
\[p: \text{You get an A on the final exam.} \]
\[q: \text{You do every exercise in this book.} \]
\[r: \text{You get an A in this class.} \]
Write these propositions using \(p, q, \) and \(r \) and logical connectives (including negations).
\[a) \ \text{You get an A in this class, but you do not do every exercise in this book.} \]
\[b) \ \text{You get an A on the final, you do every exercise in this book, and you get an A in this class.} \]
\[c) \ \text{To get an A in this class, it is necessary for you to get an A on the final.} \]
\[d) \ \text{You get an A on the final, but you don’t do every exercise in this book; nevertheless, you get an A in this class.} \]
\[e) \ \text{Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.} \]
\[f) \ \text{You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final.} \]

26. Write each of these statements in the form “if \(p, \) then \(q \)” in English. [Hint: Refer to the list of common ways to express conditional statements provided in this section.]
\[a) \ \text{I will remember to send you the address only if you send me an e-mail message.} \]
\[b) \ \text{To be a citizen of this country, it is sufficient that you were born in the United States.} \]
\[c) \ \text{If you keep your textbook, it will be a useful reference in your future courses.} \]
\[d) \ \text{The Red Wings will win the Stanley Cup if their goalie plays well.} \]
\[e) \ \text{That you get the job implies that you had the best credentials.} \]
\[f) \ \text{The beach erodes whenever there is a storm.} \]
\[g) \ \text{It is necessary to have a valid password to log on to the server.} \]
\[h) \ \text{You will reach the summit unless you begin your climb too late.} \]
\[i) \ \text{You will get a free ice cream cone, provided that you are among the first 100 customers tomorrow.} \]

30. State the converse, contrapositive, and inverse of each of these conditional statements.
\[a) \ \text{If it snows tonight, then I will stay at home.} \]
\[b) \ \text{I go to the beach whenever it is a sunny summer day.} \]
\[c) \ \text{When I stay up late, it is necessary that I sleep until noon.} \]

40. Construct a truth table for \((p \implies q) \implies r \implies s \).
Exercises from Section 1.2

8. Express these system specifications using the propositions p: “The user enters a valid password,” q: “Access is granted,” and r: “The user has paid the subscription fee” and logical connectives (including negations).
 a) “The user has paid the subscription fee, but does not enter a valid password.”
 b) “Access is granted whenever the user has paid the subscription fee and enters a valid password.”
 c) “Access is denied if the user has not paid the subscription fee.”
 d) “If the user has not entered a valid password but has paid the subscription fee, then access is granted.”

12. Are these system specifications consistent? “If the file system is not locked, then new messages will be queued. If the file system is not locked, then the system is functioning normally, and conversely. If new messages are not queued, then they will be sent to the message buffer. If the file system is not locked, then new messages will be sent to the message buffer. New messages will not be sent to the message buffer.”

Exercises from Section 1.3

4. Use truth tables to verify the associative laws
 a) $(p \lor q) \lor r \equiv p \lor (q \lor r)$.
 b) $(p \land q) \land r \equiv p \land (q \land r)$.

8. Use De Morgan’s laws to find the negation of each of the following statements.
 a) Kwame will take a job in industry or go to graduate school.
 b) Yoshiko knows Java and calculus.
 c) James is young and strong.
 d) Rita will move to Oregon or Washington.

18. Determine whether $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a tautology.

26. Show that $(p \rightarrow q) \land (p \rightarrow r)$ and $p \rightarrow (q \land r)$ are logically equivalent.

34. Show that $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology.
Exercises from Section 1.4

8. Translate these statements into English, where \(R(x) \) is “\(x \) is a rabbit” and \(H(x) \) is “\(x \) hops” and the domain consists of all animals.

\[\begin{align*}
\text{a)} \ & \forall x (R(x) \to H(x)) \quad \text{b)} \ & \forall x (R(x) \land H(x)) \\
\text{c)} \ & \exists x (R(x) \to H(x)) \quad \text{d)} \ & \exists x (R(x) \land H(x))
\end{align*} \]

10. Let \(C(x) \) be the statement “\(x \) has a cat,” let \(D(x) \) be the statement “\(x \) has a dog,” and let \(F(x) \) be the statement “\(x \) has a ferret.” Express each of these statements in terms of \(C(x), D(x), F(x), \) quantifiers, and logical connectives. Let the domain consist of all students in your class.

\[\begin{align*}
\text{a)} \ & \text{A student in your class has a cat, a dog, and a ferret.} \\
\text{b)} \ & \text{All students in your class have a cat, a dog, or a ferret.} \\
\text{c)} \ & \text{Some student in your class has a cat and a ferret, but not a dog.} \\
\text{d)} \ & \text{No student in your class has a cat, a dog, and a ferret.} \\
\text{e)} \ & \text{For each of the three animals, cats, dogs, and ferrets, there is a student in your class who has this animal as a pet.}
\end{align*} \]

16. Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.

\[\begin{align*}
\text{a)} \ & \exists x (x^2 = 2) \quad \text{b)} \ & \exists x (x^2 = -1) \\
\text{c)} \ & \forall x (x^2 + 2 \geq 1) \quad \text{d)} \ & \forall x (x^2 \neq x)
\end{align*} \]

24. Translate in two ways each of these statements into logical expressions using predicates, quantifiers, and logical connectives. First, let the domain consist of the students in your class and second, let it consist of all people.

\[\begin{align*}
\text{a)} \ & \text{Everyone in your class has a cellular phone.} \\
\text{b)} \ & \text{Somebody in your class has seen a foreign movie.} \\
\text{c)} \ & \text{There is a person in your class who cannot swim.} \\
\text{d)} \ & \text{All students in your class can solve quadratic equations.} \\
\text{e)} \ & \text{Some student in your class does not want to be rich.}
\end{align*} \]
Exercises from Section 1.5

6. Let \(C(x, y) \) mean that student \(x \) is enrolled in class \(y \), where the domain for \(x \) consists of all students in your school and the domain for \(y \) consists of all classes being given at your school. Express each of these statements by a simple English sentence.

a) \(C(\text{Randy Goldberg}, \text{CS 252}) \)

b) \(\exists x C(x, \text{Math 695}) \)

c) \(\exists y C(\text{Carol Sitea}, y) \)

d) \(\exists x(C(x, \text{Math 222}) \land C(x, \text{CS 252})) \)

e) \(\exists x \exists y \forall z ((x \neq y) \land (C(x, z) \rightarrow C(y, z))) \)

f) \(\exists x \exists y \exists z ((x \neq y) \land (C(x, z) \leftrightarrow C(y, z))) \)

12. Let \(I(x) \) be the statement “\(x \) has an Internet connection” and \(C(x, y) \) be the statement “\(x \) and \(y \) have chatted over the Internet,” where the domain for the variables \(x \) and \(y \) consists of all students in your class. Use quantifiers to express each of these statements.

a) Jerry does not have an Internet connection.

b) Rachel has not chatted over the Internet with Chelsea.

c) Jan and Sharon have never chatted over the Internet.

d) No one in the class has chatted with Bob.

e) Sanjay has chatted with everyone except Joseph.

f) Someone in your class does not have an Internet connection.

g) Not everyone in your class has an Internet connection.

h) Exactly one student in your class has an Internet connection.

i) Everyone except one student in your class has an Internet connection.

j) Everyone in your class with an Internet connection has chatted over the Internet with at least one other student in your class.

k) Someone in your class has an Internet connection but has not chatted with anyone else in your class.

l) There are two students in your class who have not chatted with each other over the Internet.

m) There is a student in your class who has chatted with everyone in your class over the Internet.

n) There are at least two students in your class who have not chatted with the same person in your class.

o) There are two students in the class who between them have chatted with everyone else in the class.

22. Use predicates, quantifiers, logical connectives, and mathematical operators to express the statement that there is a positive integer that is not the sum of three squares.