Programming Languages Research Overview

Stefan Muller
CS100
Oct. 8, 2021

Short Bio

• PhD in Computer Science from Carnegie Mellon in 2018
• Postdoc at Carnegie Mellon, 2018-2020
• Joined IIT in 2020 as Assistant Professor of Computer Science
• Research interests:
 • Language and type system design
 • Static resource analysis
 • Parallel computing
We’re more and more dependent on software

... and people are bad at writing software

especially

large concurrent interactive time-sensitive multi-language ...

software
Even getting simple programs right is hard

\[
\text{sort}([8,2,1,6,3]) = [1,2,3,6,8]
\]

\[
\text{def sort (l) ... ?}
\]

It would be great if the language gave us some help!

- **Python**
 - def sort (l)
 - Takes... something and returns... something
 - Valid: \text{sort}([8,2,1,6,3]) = “Hello World”

- **C**
 - node *sort(node *list)
 - Takes a pointer to a node and returns a pointer to a node.
 - Valid: \text{sort}([8,2,1,6,3]) = ['H'; 'e'; 'l'; 'l'; 'o'; ...]
It would be great if the language gave us some help!

- **OCaml**

 \[\text{sort : int list -> int list} \]

 - Takes an integer list and returns an integer list.
 - Valid: \(\text{sort([8;2;1;6;3])} = [8;2;1;6;3] \)
 - Valid: \(\text{sort([8;2;1;6;3])} = [10;11;12] \)

- **Coq**

 \[\text{sort : forall (l1 : list int), exists (l2: list int), Sorted l2 /\ Permutation l1 l2} \]

 - Takes an integer list and returns a sorted permutation of it.
 - Valid: \(\text{sort([8;2;1;6;3])} = [1;2;3;6;8] \)
 - ... and nothing else

Concurrency adds more complexity

A race condition!
Minimizing shared state helps

• Many languages based around highly parallel, no-shared-state applications

```python
parallel for i in range(1000000):
    A[i] = B[i] + C[i]
```

Minimizing shared state helps ... to a point

```python
parallel for i in range(1000000):
    if (i == 0):
        name = input("What is your name?")
        print("Hello, " + name)
    else:
        A[i] = B[i] + C[i]
```

Thread 0
Solution: thread priorities

.priority High
.priority Low
.order Low < High

.parallel at High:
 name = input("What is your name?")
 print("Hello, " + name)
.parallel at Low:
 parallel for i in range(1, 100000):
 A[i] = B[i] + C[i]
It would be great if the language gave us some help!

- PriML (PhD Dissertation, ongoing work)
 - Prevent priority inversions at compile time

```
constraint violated at example.prm:5.1-5.8 : high <= low
Type error: constraint violated
```

Current research projects

- PriML: parallel interactive programs
- RaCUDA: Resource-aware CUDA
 - How long will your GPU kernel take to run?
- SEEr: Scalable, Energy-Efficient HPC environment for AI-enabled science
 - (with Zhiling)
RaCUDA: Resource-aware CUDA

GPGPU: General-purpose programming for GPUs
CUDA: Extension of C for GPGPU programming

Writing efficient CUDA programs is hard

• CUDA (Idea):
 \[\text{C programmer} \]
 \[\text{C program} \]

• CUDA (Practice)
 \[\text{C programmer} \]
 \[\text{C program} \]
Writing efficient CUDA programs is hard

• RaCUDA (Current):

 ![Diagram](image1)

 C program ➔ Hmm... that might not work well.

• RaCUDA (Soon, hopefully!)

 ![Diagram](image2)

 C program ➔ This should work better ➔ New CUDA program

Current research projects

• PriML: parallel interactive programs
• RaCUDA: Resource-aware CUDA
 • How long will your GPU kernel take to run?
• SEEr: Scalable, Energy-Efficient HPC environment for AI-enabled science
 • (with Zhiling)
Running software on large systems requires making lots of decisions

int f () {
 ...
}
int g () {
 ...
}

Should I run f() on the GPU?

Would I need to send BIG FILE to the GPU if I do?

Would it still be worth it?

Looks like you’d have to send 1MB of data. Would still take less time.

Collaborators

- PriML: parallel interactive programs
 - Umut Acar (CMU)
 - Kunal Agrawal
 - Wash U. in St. Louis
 - Angelina Lee

- RaCUDA: Resource-aware CUDA
 - Jan Hoffmann (CMU)

- SEEr: Scalable, Energy-Efficient HPC environment for AI-enabled science
 - Zhiling Lan
 - IIT
 - Romit Maulik
 - IIT/Argonne
 - Mike Papka
 - NIU/Argonne
 - Valerie Taylor
 - U Chicago/Argonne
 - Xingfu Wu
 - IIT/Argonne
 - NIU/Argonne
 - U Chicago/Argonne
Students

• Xiangwei (Shawn) Li (Masters)
• Mark Lou (Undergrad)
• Deepika Padmanabhan (Masters)

• Research Opportunities Available!
 • Helpful background:
 • PL (e.g., CS440)
 • Functional programming (OCaml, Haskell, etc., CS 340)

• Contact: smuller2@iit http://cs.iit.edu/~smuller/

Current research projects
• PriML: parallel interactive programs
• RaCUDA: Resource-aware CUDA
• SEEr: Scalable, Energy-Efficient HPC environment for AI-enabled science