
Game Theory

Exploring a Search Space
GAME TREES - example games (tic-tac-toe,

chess, checkers, etc.)
Game Concepts
• Two Player Games (player A and player B,

A goes first)
• Alternating Moves
• Legal Moves (assume finite)
• Win/Loss/Draw Definitions
• Board or Game Configuration Ci

– Terminal Configuration - Win/Lose/Draw (one
or many)

– Non-terminal Configuration - all others

Sequence of Moves and
Countermoves

A sequence of board or game configurations
C1...Cm is valid if

i. C1 is a starting configuration of the game
ii. Ci, 0<i<m are non-terminal configurations
iii. Ci+1 is obtained from Ci by a legal move

by player A if i is odd
by player B if i is even

• If Cm is a terminal configuration, C1...Cm is
an instance of the game. All possible
instances of a finite game may be
represented by a game tree (all the possible
plays of the game, not necessarily a data
structure)

Example: NIM
• start with n toothpicks (C1 = starting

configuration of the game); players A and B
alternate moves (player A first)
– Legal Moves: remove 1 or 2 or 3 toothpicks
– cannot remove more toothpicks than remaining

• Win/Loss: player removing the last toothpick
loses; no draw; only one type of terminal
configuration (no toothpicks left); tic-tac-toe
has many possible terminal configurations

• Ci is described by the number of toothpicks
left
– i odd means it is player A move
– i even means it is player B move

6-NIM GAME TREE
• value on edge = # of toothpicks
removed

• value in a node = # of toothpicks
remaining

• degree of a node = # children = #
legal moves possible

• A can win only on odd levels (node
with 0 means B took last
toothpick)

• B can win only on even levels
(node with 0 means A took last
toothpick)

Sample 4-Nim
4

-1 -2 -3
3 2 1

-1 -2 -3 -1 -2 -1
2 1 0 1 0 0

-1 -2 -1 -1
1 0 0 0
-1

0

The complete game tree maps out all
possibilities (instances) for the game.
Every path down the tree from the root
is a play of the game. Game trees can
also be used to determine next move a
player should make. From C1,
assuming A wants to win, A should
make the move that maximizes A’s
chance to win. Use an evaluation
function which assigns a numeric value
to a game configuration . This is a
measure of value or worth of game
configuration for player A.

In small game trees, since it is possible to
map out game instances all the way to
terminal configurations, it is sufficient
to assign an evaluation function only at
terminal configurations and then
somehow propagate these values up the
tree to other, non-terminal game
configurations. For example:

E X
if config X wins for A
if config X wins for B

()

1
1

If one assumes both A and B want to win,
A wants to maximize the game
configuration value at A-move nodes
(bold), and B wants to minimize the
game configuration value at B-move
nodes (underscore). The following
function describes this Max-Min
procedure for transferring the game
configuration values up the tree.

V X
V X if X is on odd level

V X if X is on even level
i childrenofX

i

i childrenofX
i

()
()

()
{ }

{ }

max
min

Sample 4-Nim with configuration values
4

-1 -1 +1
3 2 1

+1 -1 +1 -1 +1 +1
2 1 0 1 0 0

+1 -1 -1 -1
1 0 0 0
+1

0

Above Max-Min Procedure is easy to
implement for small game trees when it is
possible to look ahead all the way to terminal
configurations. For larger games (i.e. chess,
checkers), one may only be able to look ahead
a few levels in the game tree because of the
large number of legal moves and
countermoves at each level. This requires us
to develop evaluation functions, for non-
terminal game configurations, using heuristic
understandings of the game to weight
various board configurations for player A.

Also the function used to transfer the
values up the tree may be enhanced
from the basic Max-Min procedure
described above. The efficiency of both
will determine how many levels of the
game tree can be searched in the limited
amount of time given to determine a
move. Trade-off between deeper
searching and more ornate evaluation
functions will have to be considered.

3

- 3 -1 -

 - 3 -1 2 -

3 2 0 -3 2

10 3 15 9 2 7 1 5 0 -3 2

Assume player A is the computer and
rewrite the algorithm to compute in a
fairly simple recursive form.

where e(x)=E(x) if is a position from
which A is to move and e(x)= -E(x)
otherwise.

V X
e X if X is a leaf of the subtree generated

V X if X is not a leaf of the subtree generated
i childrenofX

i
()

()
()

{ }
max

Below is pseudo-code for a recursive procedure
to evaluate by generating only levels of the
game tree beginning with as the root. This is
a post-order traversal because the value of a
node can be determined only after its children
have been evaluated.

VE(X, L)
if X is terminal or L=0

then return E(X) // if on B level, return –E(X)
temp = - VE(C1, L-1) // traverse the first sub-tree //
for i = 2 to #children(X) // remaining sub-trees //

temp = max[temp, -VE(Ci, L-1)]

return (temp)

Alpha-Beta Pruning

• ALPHA CUTOFF - The alpha value of a
maximum position (A player) is defined to be
the minimum possible value for that position
as determined so far.

If the absolute value of a min position (B
player) is determined to be less that or equal
to the alpha value of its parent, then no more
children of this min position need exploring.

3

- 3 -1 -
prune

 - 3 -1 2 -

3 2 0 -3 2
prune

10 3 15 9 2 7 1 5 0 -3 2

