
Complexity, State, and Concurrency
CS 100: Introduction to the Profession
Matthew Bauer & Michael Lee

Q: What makes programming hard?

- Language (so many!)

- Code volume (e.g., millions of lines of code)

- Huge libraries (platforms/APIs)

- Algorithmic complexity

- Backwards compatibility / Standards / Compliance

- Performance/Efficiency concerns

- Scaling requirements

§ Complexity

Complexity is the root cause of the vast majority of problems
with software today. Unreliability, late delivery, lack of security
— often even poor performance in large-scale systems can all be
seen as deriving ultimately from unmanageable complexity.

Ben Moseley and Peter Marks, Out of the Tar Pit

But is all complexity the same?

E.g., building an unbeatable chess AI

First steps:

- illustrate the chess board layout

- explain the rules of the game

- describe the desired outcome (e.g., checkmate)

To build a computer AI, we would also typically:

- define domain-specific types
- create a game tree (for searching ahead / weighing options)

- build supporting algorithms and tools (e.g., neural network for
deep-learning, feedback mechanisms, UI)

Lots of choices and issues along the way:

- language/framework/other prior work

- performance (how long is AI allowed to “think”?)

- brute force vs. expert system vs. self-learning vs. ?

- how to best accommodate updates and improvements?

Lots of complexity!

Which steps are truly necessary, and which steps are due to
limitations of / problems with a particular approach?

In an ideal world, we can simply feed the critical specifications
into a machine, and out pops a working solution

Chess rules Perfect AI

Magic Solution Machine ™

In the real world, we should be careful to distinguish between
necessary complexity and accidental complexity
I.e., which problems are intrinsic to the problem, and which are
simply a product of our imperfect tools?

Seek to minimize accidental complexity.

Don’t make programming harder than it needs to be!

§ Managing Complexity

Q: You’re a project manager on a software team. The next
deliverable is in a month and you’re way behind schedule.

	 You currently have 5 programmers on the job, and they’re
already churning out code as fast as they can.

	 What do you do? (You have plenty of cash.)

Add more programmers!

… our estimating techniques fallaciously confuse effort with
progress, hiding the assumption that men and months are
interchangeable.

Adding manpower to a late software project makes it later.

Frederick P. Brooks, The Mythical Man-Month

Techniques for managing complexity:

- planning and reasoning

- abstraction and modularization

- testing, testing, and more testing

Planning and reasoning

- white board / pen-and-paper design

- high-level software architecture decisions

- be conservative and pessimistic: things will go wrong!

Abstraction and modularization

- break software into pieces to be designed, implemented, and
tested separately

- build to API specifications instead of implementations

- “black box” integration

Testing, testing, and more testing

- even before development begins, specify the expected output for
every combination of input for every module

- ensure all tests pass during the development phase!
(known as continuous integration)

After fully testing modules in isolation we can piece them
together to build bigger systems (that work predictably with
little further testing)

Principle of composability

=

def quadratic_roots(a,b,c):
 d = discriminant(a,b,c)
 if d == 0:
 return -b / (2*a)
 elif d > 0:
 sqrt_d = math.sqrt(d)
 return ((-b+sqrt_d)/(2*a), (-b-sqrt_d)/(2*a))
 else:
 return "No real roots!"

def discriminant(a,b,c):
 return b*b - 4*a*c

quadratic_roots(1,4,4) => -2

quadratic_roots(1,-1,-2) => (2.0, -1.0)

quadratic_roots(1,3,8) => “No real roots!”

(
� = b2 � 4ac

x = �b±
p
�

2a

Civilization advances by extending the number of important
operations which we can perform without thinking.

Alfred North Whitehouse

What are some barriers to composability?

§ State

state | stāt |
noun
1 the particular condition that someone or something
	 is in at a specific time

To determine what is going on in our programs, we ask:

- what line of code is being executed?

- what are the values of different variables?

- what is stored in global/local/dynamic data regions?

The prevailing model of computation is a stateful one

CPU
InstructionsData

fetchread/write

program
counter

decode/execute

The prevailing model of computation is a stateful one

Infinite Runner FSM

running jumping stopped dead

tap/jump

hit ground

obstacle

tap/jump

run off ground/fall

miss ground/fall

no obstacle
/move forward

tap/restart

start

off screen

running jumping stopped dead

tap/jump

hit ground tap/jump

tap/restart

def process_game_event(event):
 if player_state == 'running':
 if event == 'tap':
 player_state = 'jumping'
 elif player_state == 'jumping':
 if event == 'hit-ground':
 player_state = 'running'
 elif player_state == 'stopped':
 if event == 'tap':
 player_state = 'jumping'
 elif player_state == 'dead':
 if event == 'tap':
 player_state = 'running'
 restart = True
 ...

*

*

*

**
* state mutations

Imperative programming languages reinforce the stateful model
by making the standard unit of execution the statement.
Statements alter state.

How do we test a stateful program?

(Is the input/output specification method sufficient?)

To properly test a stateful program, we must specify its expected
behavior for all combinations of input and starting state

What happens when a stateful system gets itself into an
unexpected state?

Its behavior is, by definition, unpredictable!

Anyone who has ever telephoned a support desk for a software
system and been told to “try it again”, or “reload the document”,
or “restart the program”, or “reboot your computer” or “re-
install the program” or even “re-install the operating system and
then the program” has direct experience of the problems that state
causes for writing reliable, understandable software.

Ben Moseley and Peter Marks, Out of the Tar Pit

num_times = 0

def foo():
 num_times += 1
 if num_times < 100:
 return 10
 else:
 return "I'm too old for this!"

=> “I’m too old for this!”

=> 10foo()

for _ in range(99): foo()

foo()

assume we don't know what went before ...

foo() + foo() # => ?

we say foo is a stateful function,
or that it has side effects

N.B.: Not all systems/computations are stateful!

E.g., mathematical functions are stateless.
Z 2

0
x dx

<latexit sha1_base64="wzKw6Op/k0VER1Q0/K5ZG+uoHwk=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY8FLz1WsB/QpGWz2bRLN5uwu9GW0P/hxYMiXv0v3vw3btsctPXBwOO9GWbm+QlnStv2t7W2vrG5tV3YKe7u7R8clo6OWypOJaFNEvNYdnysKGeCNjXTnHYSSXHkc9r2R3czv/1IpWKxeNCThHoRHggWMoK1kXouE7pX7dto7F4G436pbFfsOdAqcXJShhyNfunLDWKSRlRowrFSXcdOtJdhqRnhdFp0U0UTTEZ4QLuGChxR5WXzq6fo3CgBCmNpSmg0V39PZDhSahL5pjPCeqiWvZn4n9dNdXjrZUwkqaaCLBaFKUc6RrMIUMAkJZpPDMFEMnMrIkMsMdEmqKIJwVl+eZW0qhXnqlK9vy7X6nkcBTiFM7gAB26gBnVoQBMISHiGV3iznqwX6936WLSuWfnMCfyB9fkDafWR0g==</latexit>

Z 2

0
x dx ·

✓Z 2

0
x dx+ 5 ·

Z 2

0
x dx

◆
= ?

<latexit sha1_base64="1ce22fFzqxTAuU+6LN1sJD0IFec=">AAACOnicbVBNSwMxFMzW7/q16tFLsAiKUnaroiBiwYtHBdsK3bVks9k2NJtdkrdiKf1dXvwV3jx48aCIV3+Aaa2grQOBYeYNL2+CVHANjvNk5SYmp6ZnZufy8wuLS8v2ympVJ5mirEITkajrgGgmuGQV4CDYdaoYiQPBakH7rO/XbpnSPJFX0EmZH5Om5BGnBIzUsC89LuGm1HDwnbcb3mGPhglgT7AItvCIt4MPfvyRkOLNFmzjE+wdnzbsglN0BsDjxB2SAhriomE/emFCs5hJoIJoXXedFPwuUcCpYL28l2mWEtomTVY3VJKYab87OL2HN40S4ihR5knAA/V3oktirTtxYCZjAi096vXF/7x6BtGR3+UyzYBJ+r0oygSGBPd7xCFXjILoGEKo4uavmLaIIhRM23lTgjt68jiploruXrF0uV8onw/rmEXraANtIRcdojI6Rxeogii6R8/oFb1ZD9aL9W59fI/mrGFmDf2B9fkFpZ+ptg==</latexit>

=
x2

2

�2

0
<latexit sha1_base64="6CGXTst7W2CG/OuB0w83SQrDF5c=">AAACC3icbVDLSsNAFJ3UV62vqks3Q4vgqiRR0I1QcNNlBfuAJg2T6aQdOnkwcyOWkL0bf8WNC0Xc+gPu/Bunj4W2HrhwOOde7r3HTwRXYJrfRmFtfWNzq7hd2tnd2z8oHx61VZxKylo0FrHs+kQxwSPWAg6CdRPJSOgL1vHHN1O/c8+k4nF0B5OEuSEZRjzglICWvHLlGjuCBVDDTiAJzR76dp7ZOXYkH47A7due6ZWrZs2cAa8Sa0GqaIGmV/5yBjFNQxYBFUSpnmUm4GZEAqeC5SUnVSwhdEyGrKdpREKm3Gz2S45PtTLAQSx1RYBn6u+JjIRKTUJfd4YERmrZm4r/eb0Ugis341GSAovofFGQCgwxngaDB1wyCmKiCaGS61sxHRGdCej4SjoEa/nlVdK2a9Z5zb69qNYbiziK6ARV0Bmy0CWqowZqohai6BE9o1f0ZjwZL8a78TFvLRiLmWP0B8bnD0UWmfM=</latexit>

= 2
<latexit sha1_base64="ngHoGWtSajXpH6d7QCtzySPvM4E=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvPRY0X5AG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYkUBl3321lb39jc2i7sFHf39g8OS0fHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+G7mt5+4NiJWjzhJuB/RoRKhYBSt9HBLqv1S2a24c5BV4uWkDDka/dJXbxCzNOIKmaTGdD03QT+jGgWTfFrspYYnlI3pkHctVTTixs/mp07JuVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdoQvOWXV0mrWvEuK9X7q3KtnsdRgFM4gwvw4BpqUIcGNIHBEJ7hFd4c6bw4787HonXNyWdO4A+czx9WpI0x</latexit>

Regardless of context, they are evaluated the same way.

Useful property known as referential transparency.

Stateful functions are harder to test in isolation, but when
different stateful functions share state, it gets even worse (why?)

And if an otherwise stateless function calls a stateful function,
the first one becomes stateful too. I.e., statefulness is contagious!
How can we make this even more complicated?

§ Concurrency

The free lunch is over. We have grown used to the idea that our
programs will go faster when we buy a next-generation
processor, but that time has passed.

While that next-generation chip will have more CPUs, each
individual CPU will be no faster than the previous year’s model.
If we want our programs to run faster, we must learn to write parallel
programs.

Simon Peyton Jones, Beautiful Concurrency

The most common form of parallelism is carried out via multiple
threads of execution that run concurrently within a program.

These threads may access shared data.

They progress through the program at different, unpredictable
rates — i.e., which thread does what first is non-deterministic.

Multi-threadedSingle-threaded

def t1():
 for _ in range(times):
 count = count + 1

def t2():
 for _ in range(times):

=> 692171

=> 1000

=> 10000

=> 81443

test(500)

test(5000)

test(50000)

test(500000)

test(50) => 100

count = count + 1

def test(n):
 count = 0
 times = n
 thread1 = Thread(target=t1)
 thread2 = Thread(target=t2)
 thread1.start()
 thread2.start()
 thread1.join()
 thread2.join()
 print(shared)

count = count + 1

%reg = count
%reg = %reg + 1
count = %reg

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

1count

-regA -regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

1count

-regA -regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

1count

1regA -regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

1count

1regA -regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

1count

2regA -regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

1count

2regA -regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

1count

2regA 1regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

1count

2regA 1regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

2count

2regA 1regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

2count

2regA 1regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

2count

2regA 1regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

2count

3regA 1regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

2count

3regA 1regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

3count

3regA 1regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

3count

3regA 1regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

3count

3regA 2regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

3count

3regA 2regB

def t2():

 for _ in range(times):

 regB = count

 regB = regB + 1

 count = regB

def t1():

 for _ in range(times):

 regA = count

 regA = regA + 1

 count = regA

2count

3regA 2regB

“Race conditions” in concurrent programs may lead to
incorrect — and worse, unpredictable — results.

Concurrency also affects testing, for in this case, we can no longer
even be assured of result consistency when repeating tests on a system
— even if we somehow ensure a consistent starting state.

Running a test in the presence of concurrency with a known initial
state and set of inputs tells you nothing at all about what will happen the
next time you run that very same test with the very same inputs and
the very same starting state. . . and things can’t really get any worse
than that.

Ben Moseley and Peter Marks, Out of the Tar Pit

Statefulness and concurrency can make testing near impossible,
and destroy composability!

So how do we deal with this?

Approaches:

1. Outlaw modifications to shared data (i.e., no stateful code).

2. Limit concurrent execution by forcing critical shared data to
be accessed in isolation, using software “locks”.

3. Delegate management of concurrency to someone else —
mark which code blocks need special attention.

All these approaches have their pros/cons — concurrent
programming is still very much an open research problem.

Many CS classes present different approaches to concurrency,
along with problems they are intended to help solve.

References:

- Frederick P. Brooks, “No Silver Bullet.”

- Frederick P. Brooks, “The Mythical Man-Month.”

- Ben Moseley and Peter Marks, “Out of the Tar Pit.”

- Simon Peyton Jones, “Beautiful Concurrency.”

- John Backus, “Can Programming Be Liberated from the von
Neumann Style?”

