CLIs SCM, and VCSs (?!7?)

B} CS 100: Introduction to the Profession
% Michael Lee

ILLINOIS TECH | cCollege of Computing

Agenda

Development: |deal vs. Reality

Command Line Interfaces (CLIs)

Software Configuration Management (SCM)

\ersion Control Systems (VCSs)

ILLINOISTECH | College of Computing

§ 1. Development: Ideal vs. Reality

ILLINOIS TECH | cCollege of Computing

|deal

- Step 1: Theoretical computer scientist invents
a new algorithm to solve some problem.

- Step 2: The problem is solved. People rejoice!

ILLINOIS TECH | cCollege of Computing

Reality

- The algorithm needs to be implemented first

- The implementation of the algorithm is likely a tiny piece of the puzzle!

ILLINOISTECH | College of Computing

Software Engineering ...

- Will likely require tons of supporting code (thousands/millions of LOC)
written by many programmers

- To connect to data sources and storage
- To work with existing devices (I/O)
- o interface with users

- Etc.

ILLINOISTECH | College of Computing

Massive Complexity!

- Much of software engineering is about managing complexity
- We’'ll explore computing models for managing complexity in the future

- This lecture, we will explore some practical tools for doing so

ILLINOISTECH | College of Computing

§ 2. Command Line Interfaces (CLIs)

ILLINOIS TECH | cCollege of Computing

Graphical User Interfaces (GUIs)

Menus, windows, buttons, etc.

Primary Ul for Windows / Mac / Android / iOS / web apps / etc.

Intuitive (?)— or at least relatively approachable

But, takes a lot of work to build!

- On top of underlying functionality

ILLINOISTECH | College of Computing

UI/UX and HCI

Many overlapping fields dedicated to understanding “good” design

Modern HCI draws from psychology, neuroscience, etc.

The more complex the software,
the harder to make an intuitive Ul!

Balance between surfacing features
and ease-of-use

ing GNU Woet 1.9-beta - 1.7 is

J — Retrieval Options

¥ Mo clobber

Clea [~ Timestamping

Reject
al List ->

—&ccept/Reject ;I
" Accept(+ Reject
[~ htmfl] v git
e ot
[~ ap ¥ exe
[T doc [&l

"|_|_ "|_|_

Special Runnin g Option: [~ Mo directories
Fietries: lm— [~ Go 2 background &l e s
Additional Parame ters: [Mainfo [~ Saveto ir:

¥ Allinfo
[V At like a browser [~ Someinfo I~ Clear Server Cache
W Convetlinks I Append to gl [Recusive Relrival
W lanore robots. bt W it e Depth: IU—

Configure Praxy | Logfile: [default.log ¥ Download "as-is"

Save
settings

I;;Eﬂ) About | Esit [~ Mimrar site:
el [~ add HTML suffis

Start wiGetStart bat | Add to wGetStart bat | Empty wGatStarl.ball 'IE"r'o"H'o'a'éE [Orly go deeper

[~ Continue file download

Quota (KB
Clea 0
[~ Spider [check for files]

ILLINOIS TECH

College of Computing

Alternative: Plain Text

- Any modern language supports straightforward character-based 1/0O

- And make it easy to process "command-line arguments”

public class App {

public static void main(String[] args) { > Java App fold my laundry

fold
for (String arg : args) {

System.out.printin(arg);

my
laundry

}

ILLINOISTECH | College of Computing

Alternative: Plain Text

- Low barrier to entry, and trivial to support new “commands”
- vs. needing to build new menus / buttons / etc. into GUI
- When new features are added to software, can be easily surfaced via CLI

- May take time to trickle up into GUI

- “Power user” features ‘

ILLINOIS TECH | cCollege of Computing

CLls

- The OG Ul
- aka "REPL" — Read-Eval-Print
Loop
- aka “She”” -I:t-.i-:‘:’ ete home 1lib mnt root sbin tmp usr var

I

ILLINOISTECH | College of Computing

UNIX Shells

- UNIX = family of operating systems dating back to
1960s

- GNU Linux is a modern UNIX
- Shell = low-level CLI for the OS

- Encapsulates functions provided by
the OS and included utilities

- Popular modern shells:

- sh, bash, tsh, zsh, fish ——

ILLINOISTECH | College of Computing

§ 3. Software Configuration
Management (SCM)

ILLINOIS TECH | cCollege of Computing

A Typical Project

Multiple developers with independent dev machines / environments

Source code in one or more languages

Many pre-built libraries with interdependencies

One or more deployment targets

ILLINOISTECH | College of Computing

Essential Issues

Devs must be able to use and contribute to shared project resources

Code must be built/tested regularly, in a consistent environment

Libraries must be synchronized and set up correctly (dependency hell)

All deployment targets must be set up and tested

ILLINOISTECH | College of Computing

Some HARD Problems

What if dev machines/envs are very different? (e.g., Mac vs. Windows)

What if devs independently modify the same files?

How to make sure devs are all using the same libraries / versions?

Who runs the tests? When? How to communicate results?

How do we know the whole project builds and will work on the
deployment targets?

ILLINOISTECH | College of Computing

SCM

- Vast category of tools and processes for configuring & managing
software projects

- “Meta” development — everything besides actually writing the code
- Many buzzwords, e.g., “DevOps”

- Some “developers” (e.g., project managers) ONLY work with these tools

ILLINOISTECH | College of Computing

SCM Subcategories
O git
- Test automation

- \ersion control : Pl'OgreSS@Chef@

Continuous integration

: Virtual environments kU bEI"I'IEtES

- Containers / Virtual Machines / Emulators
puppet

ILLINOIS TECH | College of Computing

- Build automation

Focus on VCSs

- You will use a tool from every SCM category eventually
- VCS is one of the most important to learn early on!

Used by professors for assignment distribution/submission

Allow you to check out and contribute to open source projects

Helps you work on extracurricular programming projects

Vital industry tool! (Companies need you to know how to use them)

ILLINOISTECH | College of Computing

§4. \ersion Control Systems (VCSs)

ILLINOIS TECH | cCollege of Computing

Analogy:. game save slots

1985-90: Super Mario Bros 1-3

- 5-10 hours of gameplay; no savepoints

1986: Legend of Zelda

- First console game with saves! Limited save points/slots

1989: Phantasy Star |l

- 250 hours of gameplay! Only save at Inns; few slots

Mid 90s and onwards:

- Lucky, lucky, lucky kidz
ILLINOISTECH | College of Computing

Scenarios

- Save progress so as not to start all over on reboot / power loss
- Checkpoint before boss fight to try different approaches & cut losses
- Save at scenic points, cool milestones, pre-cut-scenes, etc.

- Log progress, show to friends, revisit (really?)

ILLINOISTECH | College of Computing

Nitpicks

How can | tell where a save was performed? (Save-file hell)

How can | tell what happened between saves?

Why can’t | “edit” a previous save and have it affect my current game?

Why can’t | start a new game and merge in stuff with other saves?

- “Achievements” are a kind of hack for this

Why can’t | cooperatively play with friends and merge our saves?

- What happens if someone screws up?

ILLINOISTECH | College of Computing

The ultimate save system

Saves show up on a clear timeline, where context and differences
between saves are clearly displayed

“Branches” for experimenting with different paths through the game
- Can just drop a branch or “merge” it in to another

- E.g., work on a side quest in one branch, then merge into main
branch after completing it

Collaborative (multiplayer) support (how?!)

Curated game-save collections that | can download / explore / update

ILLINOIS TECH

College of Computing

We invented the VCS!

- Version Control Systems track changes over time made to a set of files
by one or more authors

- Acollection of changes is called a version or revision

- Associated with the author who committed it, along with a
timestamp and log message

ILLINOISTECH | College of Computing

Modern VCSs

- Early systems: CVS, Subversion

- Centralized design: made sense with all authors committing to a server
housing a single “repository”

- Current systems: Git, Mercurial
- Distributed design: every author has their own clone of the repository
- Push/Pull changes to remote repositories

- Project maintainer(s) manage the authoritative repository

ILLINOIS TECH

College of Computing

VCS workflow

- Developers agree on conventions for
committing and working on branches

- Typically involve keeping a pristine
“mainline” branch

- E.g., Git workflow

git-flow
Original diagram by: Vincent Driessen
Original blog post: hp:invie. i

Time

§ Summary

ILLINOIS TECH | cCollege of Computing

