
CLIs, SCM, and VCSs (?!?)
CS 100: Introduction to the Profession
Michael Lee



Agenda
- Development: Ideal vs. Reality

- Command Line Interfaces (CLIs)

- Software Configuration Management (SCM)

- Version Control Systems (VCSs)



§ 1. Development: Ideal vs. Reality



Ideal
- Step 1: Theoretical computer scientist invents 

a new algorithm to solve some problem.

- Step 2: The problem is solved. People rejoice!

💡



Reality
- The algorithm needs to be implemented first

- The implementation of the algorithm is likely a tiny piece of the puzzle!



Software Engineering …
- Will likely require tons of supporting code (thousands/millions of LOC)

written by many programmers

- To connect to data sources and storage

- To work with existing devices (I/O)

- To interface with users

- Etc.



Massive Complexity!
- Much of software engineering is about managing complexity

- We’ll explore computing models for managing complexity in the future

- This lecture, we will explore some practical tools for doing so



§ 2. Command Line Interfaces (CLIs)



Graphical User Interfaces (GUIs)
- Menus, windows, buttons, etc.

- Primary UI for Windows / Mac / Android / iOS / web apps / etc.

- Intuitive (?) — or at least relatively approachable

- But, takes a lot of work to build!

- On top of underlying functionality



UI/UX and HCI
- Many overlapping fields dedicated to understanding “good” design

- Modern HCI draws from psychology, neuroscience, etc.

- The more complex the software,
the harder to make an intuitive UI!

- Balance between surfacing features
and ease-of-use



Alternative: Plain Text
- Any modern language supports straightforward character-based I/O

- And make it easy to process "command-line arguments”

public class App {

public static void main(String[] args) {

for (String arg : args) { 

System.out.println(arg);

}

}

}

> java App
fold 

my

laundry

fold my laundry



- Low barrier to entry, and trivial to support new “commands”

- vs. needing to build new menus / buttons / etc. into GUI

- When new features are added to software, can be easily surfaced via CLI

- May take time to trickle up into GUI

- “Power user” features

GUI

Alternative: Plain Text

core
functions

CLI



CLIs
- The OG UI

- aka “REPL” — Read-Eval-Print 
Loop

- aka “Shell”



UNIX Shells
- UNIX = family of operating systems dating back to 

1960s

- GNU Linux is a modern UNIX

- Shell = low-level CLI for the OS

- Encapsulates functions provided by
the OS and included utilities

- Popular modern shells:

- sh, bash, tsh, zsh, fish



§ 3. Software Configuration
Management (SCM)



A Typical Project
- Multiple developers with independent dev machines / environments

- Source code in one or more languages

- Many pre-built libraries with interdependencies

- One or more deployment targets



Essential Issues
- Devs must be able to use and contribute to shared project resources

- Code must be built/tested regularly, in a consistent environment

- Libraries must be synchronized and set up correctly (dependency hell)

- All deployment targets must be set up and tested



Some HARD Problems
- What if dev machines/envs are very different? (e.g., Mac vs. Windows)

- What if devs independently modify the same files?

- How to make sure devs are all using the same libraries / versions?

- Who runs the tests? When? How to communicate results?

- How do we know the whole project builds and will work on the
deployment targets?



SCM
- Vast category of tools and processes for configuring & managing

software projects

- “Meta” development — everything besides actually writing the code

- Many buzzwords, e.g., “DevOps”

- Some “developers” (e.g., project managers) ONLY work with these tools



SCM Subcategories
- Build automation

- Test automation

- Version control

- Continuous integration

- Virtual environments

- Containers / Virtual Machines / Emulators



Focus on VCSs
- You will use a tool from every SCM category eventually

- VCS is one of the most important to learn early on!

- Used by professors for assignment distribution/submission

- Allow you to check out and contribute to open source projects

- Helps you work on extracurricular programming projects

- Vital industry tool! (Companies need you to know how to use them)



§ 4. Version Control Systems (VCSs)



Analogy: game save slots
- 1985-90: Super Mario Bros 1-3

- 5-10 hours of gameplay; no savepoints

- 1986: Legend of Zelda

- First console game with saves! Limited save points/slots

- 1989: Phantasy Star II

- 250 hours of gameplay! Only save at Inns; few slots

- Mid 90s and onwards:

- Lucky, lucky, lucky kidz



Scenarios
- Save progress so as not to start all over on reboot / power loss

- Checkpoint before boss fight to try different approaches & cut losses

- Save at scenic points, cool milestones, pre-cut-scenes, etc.

- Log progress, show to friends, revisit (really?)



Nitpicks
- How can I tell where a save was performed? (Save-file hell)

- How can I tell what happened between saves?

- Why can’t I “edit” a previous save and have it affect my current game?

- Why can’t I start a new game and merge in stuff with other saves?

- “Achievements” are a kind of hack for this

- Why can’t I cooperatively play with friends and merge our saves?

- What happens if someone screws up?



The ultimate save system
- Saves show up on a clear timeline, where context and differences 

between saves are clearly displayed

- “Branches” for experimenting with different paths through the game

- Can just drop a branch or “merge” it in to another

- E.g., work on a side quest in one branch, then merge into main 
branch after completing it

- Collaborative (multiplayer) support (how?!)

- Curated game-save collections that I can download / explore / update



We invented the VCS!
- Version Control Systems track changes over time made to a set of files

by one or more authors

- A collection of changes is called a version or revision

- Associated with the author who committed it, along with a
timestamp and log message



Modern VCSs
- Early systems: CVS, Subversion

- Centralized design: made sense with all authors committing to a server
housing a single “repository”

- Current systems: Git, Mercurial

- Distributed design: every author has their own clone of the repository

- Push/Pull changes to remote repositories

- Project maintainer(s) manage the authoritative repository



VCS workflow
- Developers agree on conventions for

committing and working on branches

- Typically involve keeping a pristine
“mainline” branch

- E.g., Git workflow



§ Summary


