
Welcome to CS 100!
CS 100: Introduction to the Profession
Matthew Bauer & Michael Lee

Agenda
- Syllabus & Administrivia

- What is CS? (What is it not?)

- Teaching computers

§ Syllabus & Administrivia

Website: moss.cs.iit.edu/cs100

Instructors
Matthew Bauer
Questions? Please use cs100 channel on cs@iit on
Discord

Michael Lee
Office: SB 226C
Hours by appointment
https://calendly.com/michaelee/officehours

Teaching Assistants/Mentors
L01 Jamal Jowdeh jjowdeh@hawk.iit.edu

L02 Christopher Mocha cmocha@hawk.iit.edu

L03 Ali Guzelyel aguzelyel@hawk.iit.edu

L04 Allysa Cao acao1@hawk.iit.edu

L05 Sovannratana Khek skhek@hawk.iit.edu

L13 Shambhawi Sharma ssharma29@hawk.iit.edu

L14 Tyler Keating tkeating1@hawk.iit.edu

L15 Amena Tajammul atajammul@hawk.iit.edu

L16 Zoe Guidroz zguidroz@hawk.iit.edu

L17 Van Anderson vanderson1@hawk.iit.edu

L19 Varvara Bondarenko vbondarenko@hawk.iit.edu

L20 Joshua Godwin jgodwin3@hawk.iit.edu

Course Overview and Outcomes
An introduction to computer science as an academic pursuit and profession.
Presents a broad survey of CS related topics and research areas, emphasizing
problem-solving processes and their interdisciplinary nature.

Students will be able to:
 Analyze a complex computing problem and apply principles of computing and

other relevant disciplines to identify solutions.
 Communicate effectively in a variety of professional contexts.
 Recognize professional responsibilities and make informed judgments in

computing practice based on legal and ethical principles.
 Function effectively as a member or leader of a team engaged in activities

appropriate to the program’s discipline.

Course Components/Grading
10%: Attendance
05%: Lecture Quizzes
15%: Labs
20%: P33 Weekly Deliverables (varies per company)
25%: P33 Final Deliverable (varies per company)
25%: P33 Final Presentation

Assignment grades will be updated in Blackboard periodically.
A>=90 B>=80 C>=70 D>=60 E<60

- Lecture attendance is mandatory! Attendance taken by lecture surveys in
weeks 1-4. Attendance taken by your TA in P33 lectures (weeks 5-13).

- Attendance for labs is mandatory! Attendance taken by your TA.
- Two absences are automatically excused. Each following absence reduces

attendance score by 10%
- In case of illness or emergency, you must contact bauerm@iit.edu

before the lecture or lab for an excused absence.

Attendance

Lecture Quizzes
- Online quizzes administered during lecture (must be present

to take them, due at the end of lecture)

- First 4 weeks on the course website (login to IIT gmail before
accessing)

- Today’s Password: FSM

Lab Assignments
- Small team activity/coding problem/etc. based on lecture

topic assigned in lab weeks 1-5 and submitted online.
Deadline for each lab is the midnight your lab day the
following week

- Graded on 4-point scale

- 0 (did not attempt) - 4 (well executed & meets all reqs.)

- Unexcused absence for lab = 0 for lab!

P33 Project https://p33chicago.com/
- Work with local tech employers to solve real-life business problems.

- Small groups in lab with industry mentors to get a sense of “real” tech
work.

- Goal: Acquire skills, experiences, and connections for future academic
and practical work.

- From week 5 through 12 there will be weekly P33 team assignments and
a final project deliverable and presentation due at the end of week 13.

- Teamwork is the key. You will get feedback on improving teamwork from
your lab TA.

- Start Date: Friday, Sep 22 Presentation Date: Friday, Nov 17

CS100 - Introduction to the Profession (ITP)

- What does it mean to be a CS practitioner
- Ethical and social concerns

- Research / Industry Career Paths

- Teamwork and Collaboration

- What is CS all about? What is it not?

Is:

- software design

- algorithms

- theory of computing

- mathematical proofs

Isn’t:

- building computers

- hardware focused

- a traditional “science”

- information technology

Computer science is no more about computers than astronomy
is about telescopes.

Anonymous

Not about computers?
- Sure: we use computers as tools

- But so do folks in nearly every other data/computation
intensive fields!

- Physics, Chemistry, Economics, Sociology, Music
Production, etc.

Science?
science |ˈsīәns|
noun
the intellectual and practical activity encompassing the systematic
study of the structure and behavior of the physical and natural
world through observation and experiment

New Oxford American Dictionary

Science?
- i.e., the scientific method

- observe, hypothesize, experiment, analyze refute/
validate hypothesis

- Yeah. We don’t really do that.

Computer science is often defined as “the systematic study of
algorithmic processes, their theory, design, analysis,
implementation and application.” An algorithm is a precise
method usable by a computer for the solution of a problem.

Encyclopedia.com

Ultimate Problem Solvers
- After a computer scientist comes up with the solution to a

problem — an algorithm — a monkey can apply it!

- A monkey with boundless patience, a perfect memory, and
who can follow instructions to the letter

- I.e., a computer

Programs
- We codify solutions into programs which effectively teach

computers how to solve our problems for us.

- And, ideally, reuse our code to build every grander programs!

Programs have billions of moving pieces!

The Great Wall of China has nothing on an operating system
kernel’s codebase.

Nor does any ingenuous mechanical device.

Programming is certainly not all we do, but in order to efficiently
carry out the solutions we invent, it’s often a critical step!

§ Teaching computers

Question: what are some different ways in which we can
program (teach) a computer to solve problems for us?

- Pre-existing software (typically application specific)

- Step-by-step instructions (imperative programming)

- Describing what we want done, but not how to do it
(declarative programming)

- Building a system to learn how to solve the problem on its
own (machine learning)

... and many more!

Types of Programming Languages
- Imperative: here’s how to do it

- Declarative: here’s what to do

- Logic: deduce what I want

- Functional: compute what I want

- Domain-specific: tailored to the application

Two Central Issues
- Data representation: how do we describe the problem?

- Resource constraints: how much / what sort of computing
power do we have available?

E.g., Robotic Vacuum (Roomba)
- How to program a robot to vacuum a room thoroughly?

- Goal: maximize manufacturer profit (i.e., minimize cost of
production), but still make a good robotic vacuum

- One solution: fast CPU, lots of memory, complex AI, full-
room mapping — is this really necessary?

- What’s the alternative?

Computational Models
- We tend to reach for the most familiar — at this point,

probably a general purpose CPU that can execute a
“regular” computer program

- A “Turing Machine”

- But other, possibly more efficient
computing models exist

Finite-State Machine
- Computational model for describing programmable logic

- Consists of states, transitions between states based on inputs,
and possible actions (aka outputs) that occur on transitions

- We can use a state-transition diagram to describe a FSM

Infinite Runner FSM

running jumping stopped dead

tap/jump

hit ground

obstacle

tap/jump

miss ground/fall

no obstacle
/move forward

tap/restart

start

off screen

run off ground/fall

Infinite Runner FSM

0 1 2 3

tap/jump

hit ground

obstacle

tap/jump

miss ground/fall

no obstacle
/move forward

tap/restart

start

off screen

run off ground/fall

What inputs/actions might be needed for a robotic vacuum?

- inputs: collision sensors

- actions: move in direction; suck (perpetually — won’t specify)

North

South

EastWest

Straight-line Robovac

north-
bound

south-
bound

north clear
/ go north

south clear
/ go south

north blocked

south blocked

Straight-line Robovac

0 1north clear
/ go north

south clear
/ go south

north blocked

south blocked

Domain Specific Language
- Syntax: STATE SURROUNDINGS -> ACTION NEXT_STATE

- STATE / NEXT_STATE = 0, 1, 2, …

- SURROUNDINGS = 4 letters for matching N, E, W, S sensor
inputs — ‘X’ for clear, * to ignore, direction letter for blocked

- ACTION = N, E, W, S for movement in direction, X for no move

Straight-line Robovac
0 x*** -> N 0

0 N*** -> X 1

1 ***x -> S 1

1 ***S -> X 0

head N if N is clear

N is blocked, switch state

head S if S is clear

S is blocked, switch state

Next Week’s Lab: Picobot
- Write program(s) to make a simulated robovac navigate

rooms with different kinds of obstacles

- Interesting question: is an FSM-based bot capable of fully
covering any kind of room? (Arbitrary layout/obstacles)

- CS meta-problem: computability

Lecture Quiz
- on the course website (login to IIT gmail before accessing)

- Today’s Password: FSM

