Responsible Data Science - Dealing with Uncertainty

DBGroup

Boris Glavic

DBGroup

Illinois Institute of Technology

October 22, 2021

1bglavic@iit.edu
Outline

1. Who I am
2. What are Databases?
3. Responsible Data Science
4. Questions
Hi, I am Boris
Who I am

Hi, I am Boris

I am a database guy!
Hi, I am Boris

I am a database guy!

I will tell you:
1) Why DBs are important
2) Why DBs are interesting
3) My Research
Outline

1. Who I am
2. What are Databases?
3. Responsible Data Science
4. Questions
Where do data come from?
You might have heard...
What Are Databases?

Database systems and databases
- database systems manage databases
- a database is a collection of structured data

What do database systems do?
1. Provide persistent storage of data
2. Efficient declarative access to data: querying
3. Protection from data loss under failures
4. Safe concurrent access to data
Who Uses Databases?

- Most large software systems use databases!
 - Business Intelligence, e.g., *IBM cognos*
 - Web-based systems
- Desktop software
 - Your music player
 - Your email client (most likely at least)
- Every big company uses DBs
 - Banks
 - Insurance
 - Government agencies
 - …
- Your mobile phone
 - Many apps use an embedded database called Sqlite
Who Builds Database Systems?

- **Relational databases is big business**
 - IBM DB2
 - Oracle
 - Microsoft SQLServer
 - Teradata
 - Open Source Systems: PostgreSQL, MySQL

- **Distributed systems**
 - Cloud storage and Key-value stores
 - Amazon S3, Google Big Table, Cassandra
 - Big Data Analytics
 - MapReduce, Spark, Flink
Why Are Database Interesting?

Combination of systems and theoretical research

- **Interesting systems problems**
 - Hacking complex and large systems
 - Low-level optimizations
 - exploit modern hardware

- **Interesting theoretical foundations**
 - Complexity of answering queries
 - Expressiveness of query languages
 - Strong connections to logic
Why Are Databases Interesting (cont.)

Connections to other CS fields

- Distributed systems
 - getting more and more important
- Compilers and Programming Languages
- Modeling
- Logic
- AI and machine learning
 - Data mining
- Operating and File Systems
The Relational Datamodel

Relations aka Tables

- A table consists of **columns** and **rows**
- Tables store one type of entity
 - *e.g.*, students, bank accounts, loans, ...
- Each row is one entity
 - *e.g.*, one student
- Columns store a particular type of information about an entity
 - *e.g.*, name of a student
Example Tables

Students table

<table>
<thead>
<tr>
<th>CWID</th>
<th>Name</th>
<th>Major</th>
<th>GPA</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1333331</td>
<td>Peter</td>
<td>CS</td>
<td>3.5</td>
<td>312 555 8888</td>
</tr>
<tr>
<td>A5552341</td>
<td>Alice</td>
<td>CS</td>
<td>4.0</td>
<td>312 555 7777</td>
</tr>
<tr>
<td>A1325324</td>
<td>Elisa</td>
<td>Bio</td>
<td>3.2</td>
<td>312 555 5555</td>
</tr>
</tbody>
</table>

Grades table

<table>
<thead>
<tr>
<th>CWID</th>
<th>Course</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1333331</td>
<td>CS100</td>
<td>A</td>
</tr>
<tr>
<td>A5552341</td>
<td>CS425</td>
<td>C</td>
</tr>
<tr>
<td>A1325324</td>
<td>CS525</td>
<td>A</td>
</tr>
<tr>
<td>A1325324</td>
<td>CS566</td>
<td>B</td>
</tr>
</tbody>
</table>
What do I do with the data in my database?

- You can interrogate the database system to extract information about your data.
- This is done using a programming language called SQL.
- SQL is a **declarative** language.
 - say what data you want not how to compute it
- Queries return tables (closed language)
<table>
<thead>
<tr>
<th>CWID</th>
<th>Name</th>
<th>Major</th>
<th>GPA</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1333331</td>
<td>Peter</td>
<td>CS</td>
<td>3.5</td>
<td>312 555 8888</td>
</tr>
<tr>
<td>A5552341</td>
<td>Alice'</td>
<td>CS</td>
<td>4.0</td>
<td>312 555 7777</td>
</tr>
<tr>
<td>A1325324</td>
<td>Elisa</td>
<td>Bio</td>
<td>3.2</td>
<td>312 555 5555</td>
</tr>
</tbody>
</table>

- **How many students are in my database?**

 \[
 \text{#Students} = 3
 \]

- **Who has the highest GPA?**

 Name: Alice

- **What are the names of CS students?**

 Name: Peter, Alice
Persistence and Recovery

What if you shutdown your computer?
- Will you lose your precious data?

What happens when your computer crashes?
- Will you lose your precious data?
Persistence and Recovery

What if you shutdown your computer?
- Will you lose your precious data?

What happens when your computer crashes?
- Will you lose your precious data?

No!
- The database system stores your data on stable storage (disk)
- Database systems know how to recover from failures
- When the database system signals to you that a change you made was applied, you can rely on this
Concurrent Access

Banking Example

- **Account A**: $50
- **Account B**: $50
- Transfer $25 from A to B
- Bank gives all accounts 10% interest

Transfer Money

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtract $25 from A</td>
</tr>
<tr>
<td>Add $25 to B</td>
</tr>
</tbody>
</table>

Give 10% interest

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add 10% interest</td>
</tr>
</tbody>
</table>

Balances

<table>
<thead>
<tr>
<th>Acc. A</th>
<th>Acc. B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25</td>
<td>$50</td>
</tr>
<tr>
<td>$27.5</td>
<td>$55</td>
</tr>
<tr>
<td>$27.5</td>
<td>$80</td>
</tr>
</tbody>
</table>

We have lost interest!
Concurrent Access (cont.)

Concurrency Control

- Databases manage concurrent operations
- Prevent bad things from happening
- From the user’s perspective:
 - Behaves like your program is the only one running!

Can we loose interest?

Nope!
Outline

1. Who I am
2. What are Databases?
3. Responsible Data Science
4. Questions
The Data Age

- We (humanity) are generating data at an ever increasing rate
- Data has become a main driver for many businesses, governments, scientific disciplines, organizations

Some examples

- Online encyclopedias
- Self-driving cars
- Computers beating humans in go
- Open data (e.g., https://data.cityofchicago.org/)
- IoT
- ...
Data Science is the process of extracting insights from data and includes . . .

- **Data Collection**: finding relevant data for the analysis task
- **Data Preparation/Curation**: cleaning and integrating the data
- **Data Analysis**: analyzing the data, e.g., building machine learning models
- **Interpretation + Presentation**: creating visualizations / documents for conveying the results to a consumer
Is this linear process realistic?

- **No!** - typically requires backtracking & iteration until the results are sufficient

Example

- The analysis result is wrong / misleading because the dataset was too small to yield statistically significant results
- Workaround: collect more data, augment existing data with synthetically generated data, ...
- This new data needs to cleaned be integrated with the existing data
- No we have duplicate and conflicting information
- Ok, need more cleaning
- Repeat analysis (fingers crossed)
- ...
What are computational notebooks?

- a mix of documentation, computation, and results
- consist of cells:
 - documentation cells (typically a lightweight markup language like markdown)
 - code blocks
- results of execution of code is shown inline

Demo (Jupyter)

- https://www.kaggle.com/pouyaaskari/avocado-classification
Almost all data is uncertain!

- missing values
- typos and manual entry errors
- logical errors (zip code with incorrect city)
- misinterpretation of semantics (e.g., date is a contract start date instead of end date)

Data curation is heuristic

- typically insufficient information is available to determine how to correctly clean and integrate the data
- curation decisions are based on informed guesses (made by humans/code)
Uncertainty is everywhere

- Traditional data cleaning methods are heuristic
- Unless a human tracks uncertainty, after cleaning we lose all information about uncertainty
- We do not know whether a result is based on real data or just an artifact of cleaning / errors in the data
What can be done?

Support for modeling uncertainty
- We need to enable humans and algorithms to model the uncertainty in their data and decisions

Support for tracking uncertainty
- We need to track information about uncertainty through curation / analysis / visualization steps

Support for visualizing uncertainty
- We need to present uncertainty information to the data consumer

Demo (Vizier)
- https://vizierdb.info/
1. Who I am

2. What are Databases?

3. Responsible Data Science

4. Questions
Distributed and High-performance Databases
- HRDBMS - a scalable database with high per-node performance
- HCDF - operating system - database co-design

Data Integration and Cleaning
- How to systematically evaluate cleaning and integration systems
 - Bart
 - iBench

Data Provenance
- GProM - a generic provenance middleware
- Relevance-based Data Management - optimizing data operations based on what data is relevant
Uncertain Data Management

- How to model and track uncertainty in data?
 - Uncertainty-Annotated Databases

Data Science

- We are data science enablers!
- Vizier - a data-centric notebook platform with uncertainty tracking, provenance, spreadsheets, reproducibility
Questions?

- IIT DBGroup
 - students: 7 Ph.D., 2 Undergraduates
 - research group: http://www.cs.iit.edu/~dbgroup/
 - personal page: http://www.cs.iit.edu/~dbgroup/members/bglavic.html
 - github: https://github.com/IITDBGroup