Responsible Data Science - Dealing with Uncertainty DBGroup

Boris Glavic¹

DBGroup Illinois Institute of Technology

October 22, 2021

¹bglavic@iit.edu

Slide 1 of 32 Boris Glavic - Responsible Data Science - Dealing with Uncertainty:

- What are Databases?
- 3 Responsible Data Science
- 4 Questions

Who I am

Who I am

Slide 5 of 32 Boris Glavic - Responsible Data Science - Dealing with Uncertainty: Who I am

- 2 What are Databases?
 - 3 Responsible Data Science
 - 4 Questions

Where do data come from?

You might have heard

Database systems and databases

- database systems manage databases
- a database is a collection of structured data

What do database systems do?

- Provide persistent storage of data
- e Efficient declarative access to data: querying
- Protection from data loss under failures
- Safe concurrent access to data

Who Uses Databases?

• Most large software systems use databases!

- Business Intelligence, e.g., IBM cognos
- Web-based systems
- Desktop software
 - Your music player
 - Your email client (most likely at least)
- Every big company uses DBs
 - Banks
 - Insurance
 - Government agencies
 - . . .
- Your mobile phone
 - Many apps use an embedded database called Sqlite

- IBM DB2
- Oracle
- Microsoft SQLServer
- Teradata
- Open Source Systems: PostgreSQL, MySQL

Distributed systems

- Cloud storage and Key-value stores
 - Amazon S3, Google Big Table, Cassandra
- Big Data Analytics
 - MapReduce, Spark, Flink

ILLINOIS INSTITUTE

OF TECHNOLOGY

Combination of systems and theoretical research

• Interesting systems problems

- Hacking complex and large systems
- Low-level optimizations
 - exploit modern hardware

• Interesting theoretical foundations

- Complexity of answering queries
- Expressiveness of query languages
- Strong connections to logic

- Distributed systems
 - getting more and more important
- Compilers and Programming Languages
- Modeling
- Logic
- AI and machine learning
 - Data mining
- Operating and File Systems

ILLINOIS INSTITUTE

OF TECHNOLOGY

Relations aka Tables

- a table consists of columns and rows
- tables store one type of entity
 - e.g., students, bank accounts, loans, ...
- each row is one entity
 - e.g., one student
- columns store a particular type of information about an entity
 - e.g., name of a student

Example	Tables								
Students table									
	CWID	Name	Major	GPA	Phone				
	A1333331	Peter	CS	3.5	312 555 8888				
	A5552341	Alice	CS	4.0	312 555 7777				
	A1325324	Elisa	Bio	3.2	312 555 5555				
Grades table CWID Course Grade									
	-	A1333331	•••	<u> </u>					
		A5552341							
		A1325324	CS525	5 A					
		A1325324	CS566	5 B					

What do I do with the data in my database?

- You can interrogate the database system to extract information about your data
- This is done using a programming language called SQL
- SQL is a declarative language
 - say what data you want not how to compute it
- Queries return tables (closed language)

CWID	Name	Major	GPA	Phone
A1333331	Peter	CS	3.5	312 555 8888
A5552341	Alice'	CS	4.0	312 555 7777
A1325324	Elisa	Bio	3.2	312 555 5555

• How many students are in my database?

• Who has the highest GPA?

Name Alice • What are the names of CS students?

Name
Peter
Alice

Slide 17 of 32 Boris Glavic - Responsible Data Science - Dealing with Uncertainty: What are Databases?

What if you shutdown your computer?

• Will you loose your precious data?

What happens when your computer crashes?

• Will you loose your precious data?

What if you shutdown your computer?

• Will you loose your precious data?

What happens when your computer crashes?

• Will you loose your precious data?

No!

- The database system stores your data on stable storage (disk)
- Database systems know how recover from failures
- When the database system signals to you that a change you made was applied then you can rely on this

Banking Example

- Account A: \$50
- Account B: \$50
- Transfer \$25 from A to B
- Bank gives all accounts 10% interest

Transfer Money	Give 10% interest	Bala	inces	
Action	Action		Acc. A	Acc. B
Subtract \$25 from A			\$25	\$50
	Add 10% interest		\$27.5	\$55
Add \$25 to B			\$27.5	\$80
		_		
We have lost interest!				j

Concurrency Control

- Databases manage concurrent operations
- Prevent bad things from happening
- From the user's perspective:
 - Behaves like your program is the only one running!

Can we loose interest?

Nope!

3 Responsible Data Science

Questions

The Data Age

- \bullet We (humanity) are generating data at an ever increasing rate
- Data has become a main driver for many businesses, governments, scientific disciplines, organizations

Some examples

- Online encyclopedias
- Self-driving cars
- Computers beating humans in go
- Open data (e.g., https://data.cityofchicago.org/)
- loT
- . . .

- Data Science is the process of extracting insights from data and includes ...
 - Data Collection: finding relevant data for the analysis task
 - Data Preparation/Curation: cleaning and integrating the data
 - Data Analysis: analyzing the data, e.g., building machine learning models
 - Interpretation + Presentation: creating visualizations / documents for conveying the results to a consumer

Is this linear process realistic?

 No! - typically requires backtracking & iteration until the results are sufficient

Example

• . . .

- The analysis result is wrong / misleading because the dataset was too small to yield statistically significant results
- Workaround: collect more data, augment existing data with synthetically generated data, ...
- This new data needs to cleaned be integrated with the existing data
- No we have duplicate and conflicting information
- Ok, need more cleaning
- Repeat analysis (fingers crossed)

What are computational notebooks?

- a mix of documentation, computation, and results
- consist of cells:
 - documentation cells (typically a lightweight markup language like markdown)
 - code blocks
- results of execution of code is shown inline

Demo (Jupyter)

• https:

//www.kaggle.com/pouyaaskari/avocado-classification

Almost all data is uncertain!

- missing values
- typos and manual entry errors
- logical errors (zip code with incorrect city)
- misinterpretation of semantics (*e.g., date is a contract start date instead of end data*)

Data curation is heuristic

- typically insufficient information is available to determine how to correctly clean and integrate the data
- curation decisions are based on informed guesses (made by humans/code)

- Uncertainty is everywhere
- Traditional data cleaning methods are heuristic
- Unless a human tracks uncertainty, after cleaning we loose all information about uncertainty
- $\bullet \; \Rightarrow \;$ We do not know whether a result is based on real data or just an artifact of cleaning / errors in the data

Support for modeling uncertainty

• We need to enable humans and algorithms to model the uncertainty in their data and decisions

Support for tracking uncertainty

• We need to track information about uncertainty through curation / analysis / visualization steps

Support for visualizing uncertainty

• We need to present uncertainty information to the data consumer

Demo (Vizier)

• https://vizierdb.info/

- 2 What are Databases?
- 3 Responsible Data Science
- Questions

Distributed and High-performance Databases

- HRDBMS a scalable database with high per-node performance
- HCDF operating system database co-design

Data Integration and Cleaning

- How to systematically evaluate cleaning and integration systems
 - Bart
 - iBench

Data Provenance

- GProM a generic provenance middleware
- Relevance-based Data Management optimizing data operations based on what data is relevant

Uncertain Data Management

- How to model and track uncertainty in data?
 - Uncertainty-Annotated Databases

Data Science

- We are data science enablers!
- Vizier a data-centric notebook platform with uncertainty tracking, provenance, spreadsheets, reproducibility

Questions?

• IIT DBGroup

- students: 7 Ph.D., 2 Undergraduates
- research group: http://www.cs.iit.edu/~dbgroup/
- personal page:

http://www.cs.iit.edu/~dbgroup/members/bglavic.html

• github: https://github.com/IITDBGroup

